高性能リチウム-硫黄二次電池を実現させる新材料とそれらの設計

関西大学化学生命工学部

准教授 山縣雅紀
教授 石川正司
従来の技術とその問題点
リチウム—硫黄電池

Fig. Schematic illustration of Li-S Battery system, in which polysulfides produced during charge-discharge operation dissolve into the electrolyte. The charge-discharge curve of a sulfur-based positive electrode is described.

Li/S Battery

Operation voltage: \(~2.1\) V

\[S_8 + 16\ Li^+ + 16\ e^- \rightarrow 8\ Li_2S \]

Theoretical capacity

1672 mA g\(^{-1}\)

- Dissolution of \(\text{Li}_2\text{S}_x\) (\(x = 4\sim8\))
 - Redox shuttle reaction
 - Rapid capacity fading
 - Low Coulombic efficiency

- Poor electric conductivity of sulfur (10^{-16} S/m at 293K)
 - Low rate capability (~0.2C)
Organic solvent-based electrolyte

Ethers
- DIOX
- DME (n=1); Gn (n ≥ 2)
- THF

Sulphones
- EMS
- MiPS
- TMS

Carbonates
- DMC
- EC
- PC

Fig. Organic solvents tested for Li/S battery electrolytes.
[from J. Scheers, S. Fantini, P. Johansson, J. Power Sources, 255, 204 (2014).]

Gel-type electrolyte

LiTFSI/TEGDME/P(VdF-HFP)+PMMA

LiTFSI/MPPyrTFSI/PVdF-HFP

LiTFSI-LiNO₃/DME+DOL/PEO+SiO₂

Solid polymer electrolyte

Electrolyte composition
- PEO–LiCF₃SO₃ + S–ZrO₂ + Li₂S
- PEO₂₀LiCF₃SO₃ + S–ZrO₂ + EC/DMC + LiPF₆
- PVdF–HFP + TEGDME + LiClO₄
- PEO₁₈Li(CF₃SO₂)₂N–10 wt% SiO₂
- PVdF–HFP + PYR₁₄TFSI
- PAN–PMMA + PPR₁₄TFSI + PEGDME

Discharge–charge curves of Li–S cells with (a) [Li(G4)][TFSA] and (b) [Li(G4)](TFSA)/HFE (molar ratio of Li[TFSA]/G4/HFE = 1:1:4) measured at 30°C with a rate of 1/12C. The mass ratio of S/C/PVA was 60:30:10.

従来の技術とその問題点
リチウム—硫黄電池用溶媒和イオン液体電解液

図 グライム系溶媒和オン液体を電解質に用いたリチウム硫黄電池。硫黄正極の溶出が制されるため高い容量とクロック効率が維持される。

Comparison of S8 and Li2Sm solubility limits in [Li(G4)1][TFSA] and [Li(G4)1][TFSA]/HFE (molar ratio of Li[TFSA]/G4/HFE = 1:1:4) at 30°C. The structure of HFE is shown in the inset.

新技術の概要
高容量・高出力の硫黄電池の実現のための材料

充放電中での正極からの硫黄の溶出を抑制する目的として、硫黄のホスト材料、新たな有機溶媒系、ポリマー、固体電解質やシャトルを抑制するための添加剤などの提案がなされているが、電池性能の犠牲、電解液の取り扱いにくさなど課題も多い。

- ミクロ多孔性炭素材料の利用による正極での硫黄担持力の向上と高容量化
- 開発した硫黄正極と新規電解液との組み合わせによる硫黄電池の高出力化
- 新規バインダーとミクロ多孔性炭素材料とのマッチングによる硫黄正極の高性能化
硫黄-ミクロ孔炭素
1 nm以下の細孔構造を持つ炭素に硫黄を担持すると、硫黄はS_{4,2}の状態で存在する。
- 溶出反応に関連するLi_{2}S_{8,4}の形成を回避可能
- 特別な電解液を使う必要がない

活性炭（AC）の中でもミクロ孔に富んだ材料を適用⇒モデル複合体
・性能向上因子や種々の条件下における正極としての特性の検討

Synthesis flow
1) Sulfur + AC mix
2) 155℃ 5h
 （細孔内にSを融解拡散）
3) 300℃ 2h
 （表面に残留したSを昇華除去）
4) 空冷
新技術の特徴・従来技術との比較
ミクロ多孔性炭素材料の利用による高容量・高硫黄担持正極

電圧：1.0 – 3.0 V 電流：167.2 mA g⁻¹ (0.1 C) 温度：25 ℃ ※効率 = charge/discharge

➤ 硫黄の利用率向上
➤ 100サイクル後も1000 mAh g⁻¹以上を保持
Ionic liquid electrolyte

![Ionic liquids](image)

- BMIM+ (Bis(trifluoromethyl)imidazolium)
- EMIM+ (Emimium)
- DMPI+ (1,3-Dimethyl-3-propylimidazolium)
- PYR14+ (1,3-Dimethyl-1-vinylimidazolium)
- P1A3+ (1,3-Dimethyl-1-vinylimidazolium)
- PiP14+ (1,3-Dimethyl-1-vinylimidazolium)
- DEME+ (Diethylmethylpentylammonium)

Bis(trifluoromethylsulfonyl)imide (TFSI*)

LiTFSI/Py_{14}TFSI

LiTFSI/DEMETFSI, DEMEBF_{4}

LiTFSI/Py_{13}TFSI, Py_{14}TFSI

LiTFSI/Py_{13}FSI, Py_{13}BETI, Py_{13}OTf

LiTFSI/P_{2225}TFSI,

LiTFSI/Pip_{13}TFSI

LiTFSI/BDMIImTFSI

- Low rate capability
- Few ionic liquids having electrochemical stability for negative electrodes
新技術の特徴・従来技術との比較
硫黄正極と新規電解液との組み合わせによる硫黄電池の高出力化

両系とも60サイクル後でも約1200 mAh g⁻¹程度の容量保持率を示した。
効率も99-100%で安定している。
新技術の特徴・従来技術との比較
硫黄正極と新規電解液との組み合わせによる硫黄電池の高出力化

Fig. Discharge rate capability of the S/C positive electrode in LiFSI/EMImFSI obtained at discharge C-rate from 0.2 to 2.0.

Fig. Operation temperature dependences of discharge capacity of the test cell with LiFSI/EMImFSI at 0.1/0.1 (25°C) and 0.07/0.1 charge-discharge C-rates. The cell was cycled at -10°C after 5 cycles of operation at 25°C.
従来の技術とその問題点
新規バインダーによる硫黄正極の高性能化

合材電極の構造

バインダーは合材層内の活物質および、導電助剤、集電体を接着する役割を担う。

・合材層内の存在比が少ない

・活物質、導電助剤、集電体、電解液との親和性が高い

・電気的に低抵抗

・電気化学的に安定
従来の技術とその問題点
新規バインダーによる硫黄正極の高性能化

合材電極用バインダー

水系

- スチレン-プタジエンゴム（SBR）
 \[(\text{CH}_2-\text{CH})_m (\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2)_n\]
- カルボキシメチルセルロース（CMC）

非水系

- ポリフッ化ビニリデン（PVdF）
- ポリエチレンオキシド（PEO）

ゼラチン（Glt）、ポリエチレンオキシド（PEO）など
従来の技術とその問題点
新規バインダーによる硫黄正極の高性能化

■ SBR+CMC
 • 電極製造プロセスでの取扱いが難しい
 • 酸化劣化を起こしやすく、高電位での保持に問題
 • 膨潤による電池特性の低下

■ PVdF
 • 親和性が低く、活物質分散性が悪い（NMPなどの分散剤が必要）
 • 電極の内部抵抗増加の一因
 • 高温特性に問題

■ PVA
 • 再現性が得られない
 • 弾性に乏しく、電極構造が破壊されやすい

■ Glt
 • 再現性が得られない
 • 温水にしか溶解せず取扱いにくい上に、温水が硫黄と反応
新技術の特徴・従来技術との比較
天然高分子バインダの利用

天然高分子（アルギン酸）

アルギン酸の利用分野…
・化粧品用原材料
・食品添加物
・生化学、医療用機能性材料

Alginate

低環境負荷材料
自然界に豊富に存在
低価格

Seaweeds
出力特性（従来バインダとの比較）※アルギン酸Na

Fig. Discharge capacitance as a function of various current densities for the EDLC cells with Alg(●), CMC(■), and PVdF(△) binders. Current density: 0.1 – 100 A g⁻¹.

Fig. Ragone plots for the test cells with the composite electrodes containing Alg(●), CMC(■), and PVdF(△) in 2.5 V charge–discharge operation. TEMABF₄/PC is employed as the electrolyte.
新技術の特徴・従来技術との比較
天然高分子バインダ利用によるデバイスの高出力化

LIB炭素負極への適用（※アルギン酸Na）

<リチウムイオン二次電池用負極に対するアルギン酸バインダーの適用>
アルギン酸バインダーの利用により黒鉛電極のレート特性が向上

Fig. Dependence of discharge capacity on discharge C-rate (0.1 – 10C) for the test cell using C/KB(Alg) and C/KB(PVdF) anodes. Electrolyte is 1.0 mol dm⁻³ LiPF₆/EC+DMC.
出力特性 (※アルギン酸Mg Na塩よりさらに安定かつ高出力化が可能)

アルギン酸バインダーの利用により黒鉛電極のレート特性が向上
活物質であるLNMや導電助剤に対するアルギン酸の高い親和性
新技術の特徴・従来技術との比較
天然高分子バインダを利用したリチウム硫黄電池

【本発明の目的】
本発明では、天然高分子であるアルギン酸塩(Na塩以外)を硫黄正極用のバインダとして用い、さらに電解液との高い親和性を利用して、既存のリチウム硫黄電池の高出力化、高サイクル特性を可能とすることを目的としている。

【本発明の概要】
本発明では、天然高分子であるアルギン酸塩(Na塩以外)を硫黄正極用のバインダとして用い、さらに電解液との高い親和性を利用して、既存のリチウム硫黄電池の高出力化、高サイクル特性を可能とするものである。
新技術の特徴・従来技術との比較
天然高分子バインダを利用したリチウム硫黄電池

■ 天然高分子を利用しているため、コストの削減が見込める。
■ 天然高分子を利用しているため、環境負荷の少ない。
■ 活物質および電解液との親和性が高く、また接着力も十分であり、電極作製が容易。
■ 従来のバインダ以上に合材電極の均一性が得られる。
■ 本発明のバインダの使用により、上記活物質を利用した合材電極のサイクル特性が向上する。
■ 本発明のバインダの使用により、デバイスの電気抵抗を軽減することができる。
■ 本発明のバインダの使用により、デバイスの出力特性が向上する。
新技術の特徴・従来技術との比較
天然高分子バインダを利用したリチウム硫黄電池

評価方法

・硫黄正極
 \[S/C : AB : \text{Alg-}X = 91 : 5 : 4 \quad (\ast X = \text{Na}^+, \text{NH}_3^+, \text{Mg}^{2+})\]
 \[S/C : AB : \text{CMC : SBR} = 91 : 5 : 2 : 2\]

・電解液： \([\text{Li(G4)}][\text{TFSI}] + \text{HEF}\]
 \(\ast \text{LiTFSI:G4:HEF} = 10:8:40(=\text{mol/mol/mol})\)

・セパレータ：PEベースセパレータ

・対極：Li金属箔

・二極式セル
 →電流レート：0.1 C（1 C率=1672 mA g\(^{-1}\))
新技術の特徴・従来技術との比較
天然高分子バインダーを利用したリチウム硫黄電池

■ スラリー分散性
各バインダーに少量の硫黄-炭素複合活物質を添加し、遊星攪拌機にて15分攪拌

アルギン酸バインダーは炭素－硫黄複合活物質と高い親和性と分散性を示す
新技術の特徴・従来技術との比較
天然高分子バインダを利用したリチウム硫黄電池

アルギン酸バインダの比較

正極：S(29%)-AC:AB:Alg-X=91:5:4(=w/w)
負極：Lithium
電解液：LiTFSI/G4/HFE=10:8:40(=mol/mol)
電圧範囲：1.0-3.0 V 電流値：0.1 C（167.2 mA g⁻¹）

→高容量を保持
→強度が弱く、再現性が得られにくい
→既報と同じく著しい容量の低下

Alg-Mgバインダーがもっとも安定したサイクル性を持つ。
⇒Alg塩の中で粘度が最も粘度が高い。結着性が最もよい。
新技術の特徴・従来技術との比較
天然高分子バインダを利用したリチウム硫黄電池

■ バインダ比較 (Alg-MgとCMC+SBR)
新技術の特徴・従来技術との比較
天然高分子バインダを利用したリチウム硫黄電池

バインダ比較 (Alg-MgとCMC+SBR)

アルギン酸マグネシウム (Alg-Mg) とカルボキシルメチルセルロース + ステレン-ブタジエンゴム (CMC+SBR) のバインダを用いたリチウム硫黄電池の放電容量とクーロン効率比較グラフを示す。Alg-Mgバインダーを用いた電極は50cyc.1214 mAh g⁻¹の放電容量を示した。一方、CMC+SBR電極は容量低下傾向が見られた。解体すると大きくクラックが入っているのが観察された。
新技術の特徴・従来技術との比較
天然高分子バインダを利用したリチウム硫黄電池

バインダ比較（出力評価）

正極：S(29%)-AC:AB:Alg-Mg=91:5:4(=w/w)
負極：Lithium
電解液：LiTFSI/G4/HFE=10:8:40(=mol/mol)
電圧範囲：1.0-3.0 V 電流値：0.2, 0.3, 0.5 C 充放電（Ex. Alg-Mg 電流値0.44, 0.66, 1.10 mA）

←Alg-Mg
0.5Cで高容量を維持

←CMC+SBR
0.5Cで容量が大きく低下
新技術の特徴・従来技術との比較
イオン液体と天然物バインダーとを適用したチウム硫黄電池

LiFSI/EMImFSI
[Li(G4)][TFSI]+HFE [Li(G3)][TFSI]+HFE

[Li(G3)][TFSI]

- FSI系イオン液体については70サイクル後でも約900 mAh g⁻¹程度の容量保持率を示した。効率も99-100%で安定している。
- G3およびG4のHFE添加系は同等であり、G3系は容量の減衰が見られた。
→G3系は分極が大きいため、小さな容量低下でもサイクルを重ねると影響が大きくなっていく。
新技術の特徴・従来技術との比較
イオン液体と天然物バインダーとを適用したチウム硫黄電池

EMImFSI及びMPPyFSIのレート特性
測定条件：0.1 C(167 mA g⁻¹)の電流値、1200-3000 mVの電圧範囲で5サイクル間の形成サイクルを行なった後にレート試験を行なった。レート試験は、出力（放電）のみの電流レートを変更し評価した。充電は全て0.1 Cで行なった。

1 Cレート時に性能に違いが確認され、充放電カーブから放電時の反応分極は同程度だが、放電の進行とともにMPPy系は放電電圧がEMI系よりも徐々に下がっていくことから、拡散に由来した抵抗が影響していると考えられる。EMI系は粘性が低く、イオン伝導度も高いので1 C放電でも1200 mAh g⁻¹程度の容量を示している。
新技術の特徴・従来技術との比較
イオン液体と天然物バインダーを適用したチウム硫黄電池

Fig. Effect of the use of ionic liquids on the C-rate capability of the S/C positive electrode with Alg-Mg or CMC+SBR binders. @25℃

Alg-Mg+EMImFSI
2.0Cでの作動が可能かつ、一切の揮発性成分無しでの高出力化が可能

CMC+SBR+EMImFSI 従来型ILに比べてレート特性に優れる。
アルギン酸（Alginate）

想定される用途・業界

・移動用電源
・定置用電源
・大型電源

電気・電子関連
エネルギー関連
自動車関連
実用化に向けた課題

■ 実用を想定した電極強度の向上
従来技術に匹敵する強度あるいは実用上十分な電極強度を得るための材料選択や材料のマッチングを行う必要がある。

■ より一層の出力化
リチウム硫黄二次電池の代表的な欠点である低い出力特性について、本発明の適用による高出力化の可能性が見出されたが、より一層の高出力化を可能とする類似材料の探索やマッチングが必要である。

■ 実用環境下での電池作動特性の確認
天然物由来であるため、実用作動環境下での特性について評価を行う必要がある。
<table>
<thead>
<tr>
<th>発明の名称:</th>
<th>バインダ、バインダを含有する電極、および電気化学デバイス</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願番号:</td>
<td>特願2014-234021</td>
</tr>
<tr>
<td>出願人:</td>
<td>学校法人関西大学</td>
</tr>
<tr>
<td>発明者:</td>
<td>山縣雅紀、石川正司、高橋卓矢、松井由紀子</td>
</tr>
</tbody>
</table>
問い合わせ先

科学技術振興機構
環境エネルギー研究開発推進部
TEL 03－3512－3543
FAX 03－3512－3533
E-mail alca@jst.go.jp