

化学発光タンパク質を利用した解析、診断、照明、アート技術

大阪大学 產業科学研究所

永井 健治

発光するタンパク質(蛍光タンパク質、化学発光タンパク質)

の遺伝子を改変し、有用な機能を付与して生命科学研究に応用する

自然界の発光生物

ホタルやツキヨタケなどの光るキノコ、オワンクラゲのように、自ら光を発する事のできる生き物が存在します

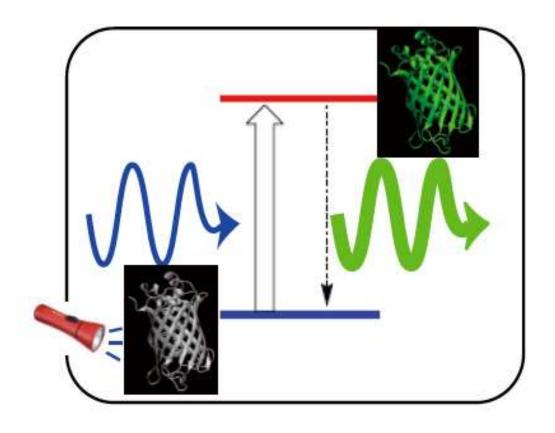
ホタル

ツキヨタケ

オワンクラゲ

化学発光のメカニズム

発光タンパク質が発光基質を酸化することで光ります (化学エネルギーを利用→化学発光)


発光タンパク質 (酸化酵素)

発光基質

化学発光と蛍光の違い

蛍光

化学発光

蛍光と化学発光では、光を発するメカニズムが 異なります

化学発光と蛍光の違い

蛍光

(利点)

高い時間・空間分解能

光による操作が可能

(欠点)

励起光の必要性

蛍光褪色

光損傷・光毒性

自家蛍光

低コントラスト 光遺伝学との併用が不可

化学発光

(利点)

生体に優しい

褪色がない 高いコントラスト 光遺伝学との併用が可能

(欠点) **シグナルが弱い**

低い時間・空間分解能 発光基質の導入が必要

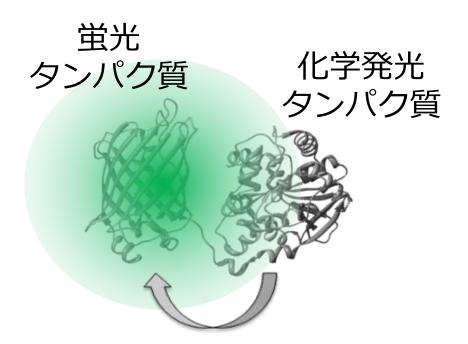
従来の化学発光の弱点

→シグナルが極めて弱い

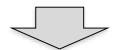
毛の無い ヌードマウス

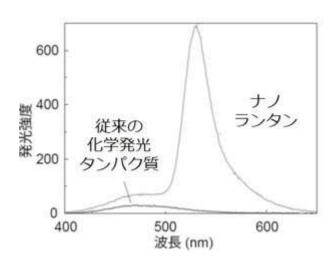
麻酔

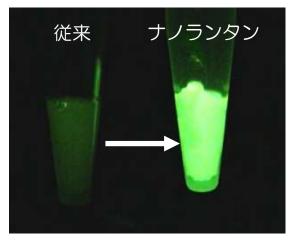
長時間露光

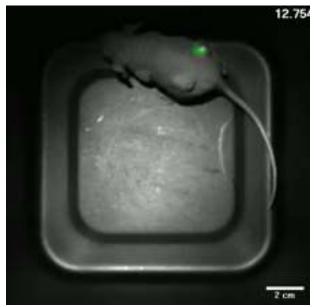

http://www.summitpharma.co.jp/

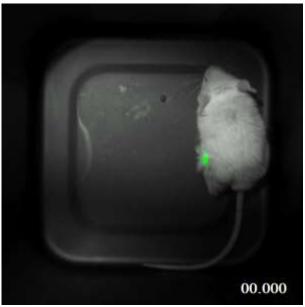
- ・正常状態での観察が困難
- •リアルタイム観察が不可能
- ・ 高感度カメラが必要


高輝度発光タンパク質"ナノランタン"

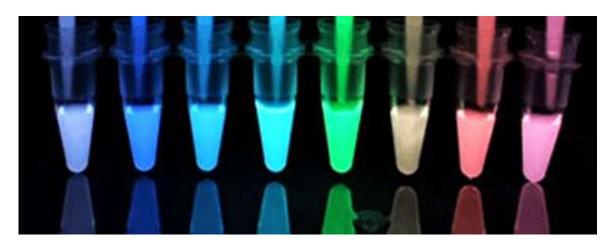

Saito et al. Nat. Commun. 2012; Takai et al. PNAS, 2015



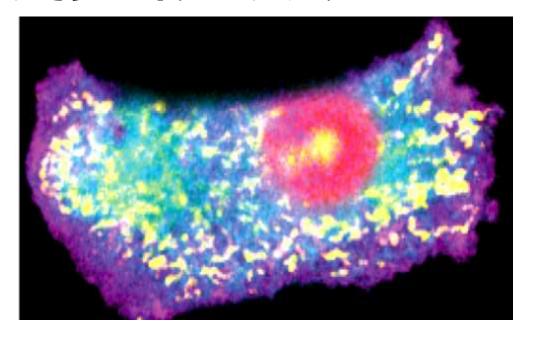

高効率な励起エネルギー移動



熱として放出されるエネルギー も光に変換

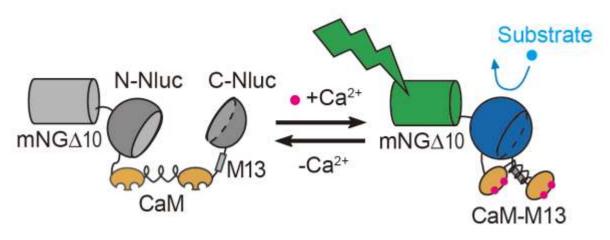


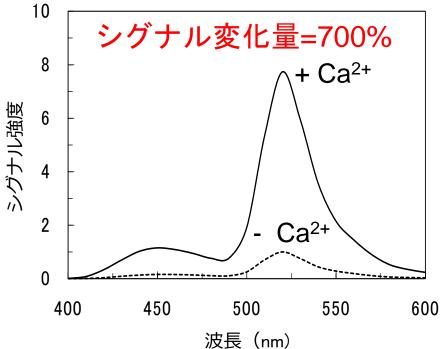
リアルタイム観察が可能に!

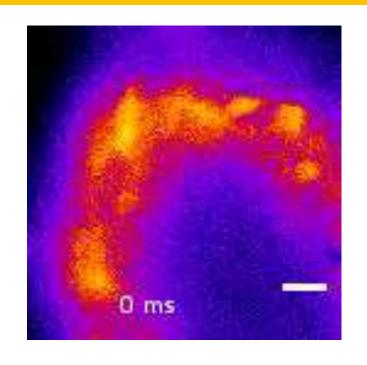

"ナノランタン"の技術革新

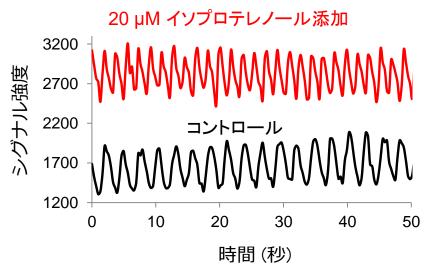
新技術説明会 New Technology Presentation Meetings!

◆ 8色のナノランタンシリーズの開発

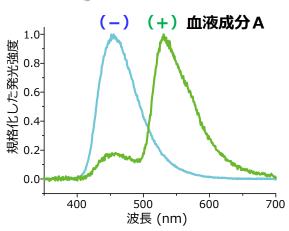



◆ 単細胞レベルで多色イメージング




オルガノイドなどを利用した慢性効果評価による化合物スクリーニング

Suzuki et al. Nat. Commun. 2016


スマートフォンを利用したオンサイト診断

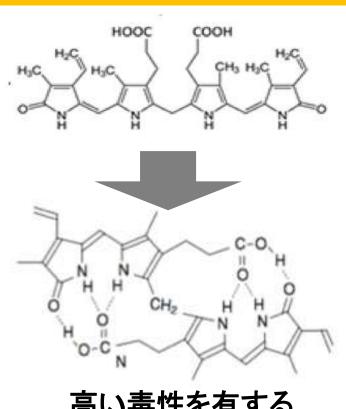
血液成分診断用 発光センサー 特願2017-013463 化学発光診断用基板作製法

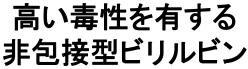
特願2017-018773

http://www.bdj.co.jp/pas/products/safety-lancet.html

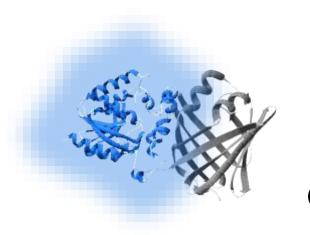
試料採取部

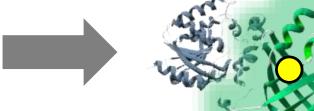
WiFiで医療機関へ送信




地球上のどこでも オンサイト診断が可能に!

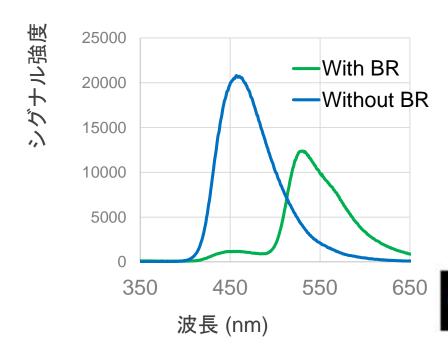
スマートフォンを利用した血中・尿中化合物診断

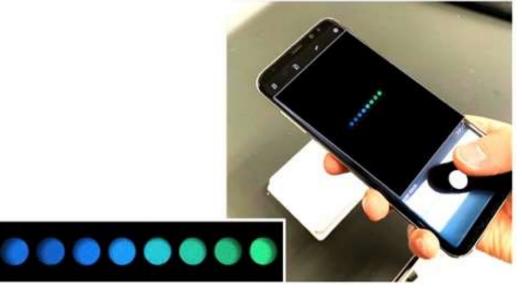




脳症

非包接型ビリルビン或いはその代謝産物の 簡便な血中・尿中検査の需要有り





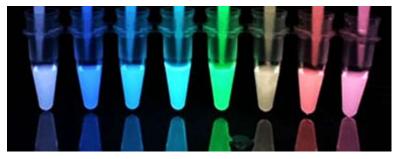
非包接型ビリルビン

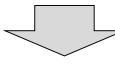
生体物質の検出方法、 それに用いる化学発光指示薬 特願2017-013463 PCT/JP2018/002587

ナノランタン遺伝子を導入した発光植物

他

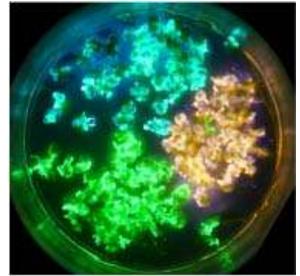
の


植

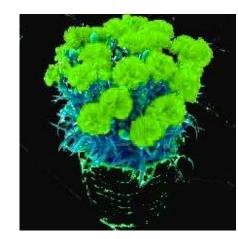

物

1=

応


用

遺伝子導入


発光コケ

発光基質を振りかける 或いは 吸わせることにより発光

発光花のイメージ図

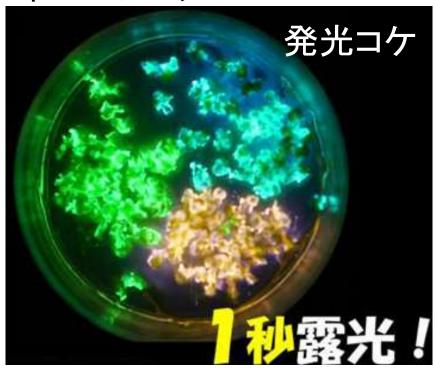
市 場 展 開


発光植物市場の創出

その他の「発光植物」

シロイヌナズナ

ペチュニア



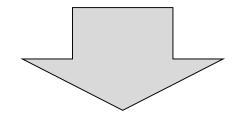
新技術の特徴・従来技術との比較

本プロジェクト

明るさ・多色発光の点で圧倒的優位

農研機構ら 紫外線照射

VS



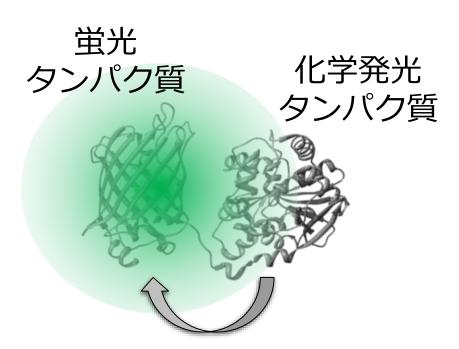
実用化に向けた課題

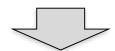
基質添加なしで発光させることが必要

発光基質の生合成に必要な遺伝子を導入 することで解決する

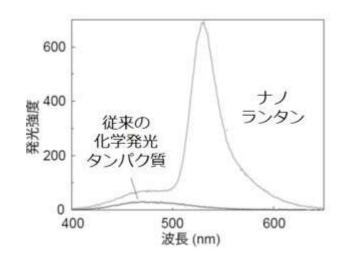
発光基質を細胞で生合成させることで 完全自動発光するタバコの葉を作り出すことに成功!

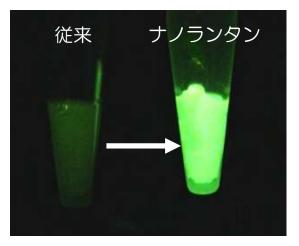
LED: ノーベル物理学賞2014


電力消費が少ない光源として注目されているがそれでもエネルギー効率は30-40%程度



高輝度発光タンパク質"ナノランタン"





高効率な励起エネルギー移動

熱として放出されるエネルギー も光に変換 Saito et al. Nat. Commun. 2012

Gamillusを利用すれば最大90%のエネルギー効率が得られる

Protein	р <i>К</i> а	Ф (%)
Gamillus	3.5	90
mNeonGreen	5.7	80
mVenus	6.0	57
EYFP	6.9	67
EGFP	6.0	60

蛍光蛋白質, 特願2016-046953, PCT/JP2017/009759

2050年の世界

LEDの次はLEP

Light-emitting plant (発光植物)

LEP: 発光タンパク質の未来応用

電気を使わずに夜の街を照らす技術

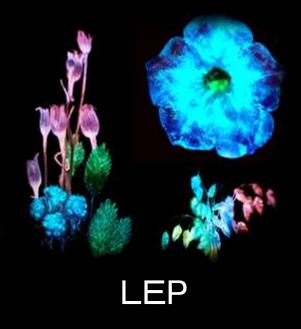
大阪・関西万博での社会実装実験に向けて

発光樹木の未来応用

イメージダ

メディアでの紹介

- 日経新聞、NHKニュースなど
- 阪大NewsLetter2016年度春号
- 大阪・朝日放送 ナイト in ナイト 「ビーバップ!ハイヒール」 2015年9月10日放映
- ・ テレビ東京 「未来シティー研究所」 2016年8月22日放映
- ガリレオX2018年8月12日放映



発光植物による未来照明

室内照明

街路照明

発光蛋白質工学が拓く未来社会(Society 6.0)

発光花による室内照明

発光街路樹による都市照明

法科学鑑定

衛生検査

環境検査

オンサイト健康診断

リラクゼーション

住生活

開発機関

国内大学

国内研究機関

海外研究機関

大学病院 医療機関等 基礎技術

タンパク質工学

遺伝子導入技術

植物育種

有機化学

エネルギー利用

提携企業

花卉関連

林業関連 インテリア

エンターテイメント

バイオケミカル

ファッション

食品

測定機器

インフラ

医療・製薬

異分野融合型の研究開発により課題を克服

企業への期待

カルタヘナ法の承認に必要な農地・植物工場での大規模栽培を自治体・企業と連携して進めたい。

発光植物を利用したイルミネーション事業・アート事業に関心のある自治体・企業と連携して進めたい。

発光タンパク質を利用した診断技術に興味のある、 企業との共同研究を希望。

新技術説明会

本技術に関する知的財産権

発明の名称:発光蛋白質、その基質、及び

それらの仕様

出願番号:特願2018-106866

出願人:大阪大学

発明者:永井健治、岩野恵

発明の名称: 化学発光指示薬による検体検

出法

出願番号:特願2017-01877,

PCT/JP2018/002591

出願人:大阪大学

発明者:永井健治、新井由之、岩野恵

発明の名称:生体物質の検出方法、それに

用いる化学発光指示薬

出願番号:特願2017-013463,

PCT/JP2018/002587

出願人:大阪大学

発明者:永井健治、新井由之

発明の名称: 蛍光タンパク質

出願番号:特願2016-046953,

PCT/JP2017/009759

出願人:大阪大学

発明者:永井健治、篠田肇、松田知己、マ

ユアンキン

発明の名称: 蛍光蛋白質

出願番号:特許第6115923号

出願人:大阪大学

発明者:永井健治、ティバリ・ダーメンド

ラ・クマール、新井由之

発明の名称 : 蛍光蛋白質

出願番号:特願2015-097655、

PCT/JP2016/064132

出願人:大阪大学

発明者:永井健治、高内大貴、新井由之、

中野雅裕

お問い合わせ先

大阪大学 共創機構 産学共創・渉外本部 シニア・リサーチ・マネージャー 金 允政 TEL 06-6879-4861 FAX 06-6879-4205 e-mail ipm@uic.Osaka-u.ac.ip