

プラズマを精度良く分析できる レーザー計測システム

九州大学 大学院総合理工学研究院 エネルギー科学部門 電気理工学 助教 富田 健太郎

• プラズマとその工学応用

- ・ 発表者の研究例(プラズマの光源応用)
- ・新技術(特許)の内容
- まとめと本技術の利用に関して

プラズマとは

落雷、オーロラ、太陽、、、

「未来をつくるプラズママップ」 http://www.jspf.or.jp/news/plasmamap.html

しかし話は複雑(相乗効果がプラズマの特徴) イオン+原子、イオン+紫外光 等

何を制御するか

Website of The Leibniz Institute for Plasma Science and Technology (INP)

先端研究では多相間の相互作用 を追求。話はより複雑に(プラ ズマの医療応用、農業応用)

電子密度、電子温度 負イオン密度 中性粒子温度 ラジカル(原子)密度 流れ

様々な物理量計測を通じた現象の理解

プラズマの光源応用

軟X線・極端紫外で容易に大光量が得られる

電子遷移放射(束縛-束縛遷移)では強い線スペクトルが得られる。

EUVリソグラフィ光源(13.5 nm)

LIGHT SO URCES More efficient plasmas Appl. Phys. Express 7, 086 202 (20 14)

Beyond EUV光源 (6.X nm)

Yoshida et al., APEX(2014)

水の窓光源 (2.3–4.4nm)

Jacobsen C, Trends in cell biology, Volume 9, Issue 2(1999)

the world's first 5nm silicon chip

https://arstechnica.com/gadgets/2017/06/ibm-5nm-chip/

コスト・稼働率に課題

"500W-1kW sources likely needed to make EUV cost effective.", Intel, Ref. ASML SMALL TALK 2016, ASML

EUVリソグラフィー

EUV露光の核(光源)はプラズマ

戸室他 JSPS meeting 19p-H137-17

10

Pre-pulse	10 ps	10 ns
CE(効率)	4.7 %	3.0 %
/graph view	ドーム状	円盤状 laser
Shadov 90 deç	> 300µm	> 300µm

戸室他 JSPS meeting 19p-H137-17

理由は? 限界は?

改善策は?

CO2 pulse enegy vs. EUV-CE

- •空間分解(≦50 µm)
- •時間分解(≦ 5 ns)
- ・非接触(乱さない)
- n_e, T_e, Z

レージ ((トムソン散乱法)

スズドロップレットターゲット例

レーザー散乱法

× 100

KYUSHU UNIVERSITY

n_e, T_eからEUV発光を説明 周囲に大量の低温Snイオン(改善の余地大)

新技術の内容(高精度レーザー計測)

- レーザー散乱法自体は伝統的手法
- しかしその産業応用には抜本的な検出感度の向上が必要(空間・時間分解能・適用範囲の拡大)
- 分光技術の困難さから対象外であった「イオン項 スペクトル」の高い信号強度に着目。
- 新たな分光システムを開発。<u>従来比400倍の感度</u>
 <u>達成。</u>実用レベルのEUV光源の構造を解明。
- 光源の出力に直結するプラズマパラメータを高精
 度に計測可能とした。

まとめと本技術の利用に関して

・光源プラズマの開発(特に短波長光源)

プラズマの温度・密度構造をデザインする まったく新しい開発が可能

・各種プラズマ装置 (計測実績多数)

電力・エネルギー機器 (プラズマ遮断現象・SF6に代わる代替ガス の模索・新規電極材料の模索) 電気推進システム (宇宙推進イオンエンジンの 高効率化研究) 大気圧プラズマ (非平衡プラズマによる特殊 反応場の生成・制御)

分光システム

Entrance Slit 20µm

- spectral resolution (10pm)
- stray light rejection(±14pm)

企業への期待

- ・プラズマ光源(特に軟X線、極端紫外光、真空 紫外光など短波長)の生成技術を持つ、企業 との共同研究を希望。
- また、短波長光源(特に軟X線から極端紫外光)を開発中の企業、X線検査装置・EUV検査装置分野への展開を考えている企業には、本技術の導入が有効と思われる。

本技術に関する知的財産権

発明の名称:プラズマ分析システム 出 願 番 号:特願2019-015291 出 願 人:九州大学 発 明 者:富田健太郎、山形幸彦

- 九州大学学術研究・産学官連携本部 知的財産グループ
- TEL 092-802-5137
- FAX 092-802-5145
- e-mail transfer@airimaq.kyushu-u.ac.jp

