

非真空プラズマ技術を応用した 簡易な局所窒化処理法

軟

硬

包息

硬化層が剥離しない!

誘電体バリア放電(DBD)

電界が生じる空間に多数のフィラメント放電が 短時間ついては消える

- → ガスがジュール加熱されない
- : 熱負荷を嫌う用途に用いられる

例)オゾナイザー,樹脂の表面改質 医療・バイオ応用

誘電体バリア放電(DBD)の原理

処理範囲の制御性

対向電極を小さくすれば, その範囲にだけ窒化処理ができるのでは?

硬化の実証

100 μmの解像度で 窒化パターニングが可能か!?

対向電極を点にしてみた

実験条件	
平板電極	15 × 15mm
点電極	直径0.7mm
バリア	Al ₂ O ₃ (2.5mm)
印加電圧、周波数	6kV, 29kHz
ギャップ長	1.5mm~2mm
カメラの露光時間	1/30s

プラズマ点火面積の拡張化

温度上昇にともない、DBDの点火面積が拡張

拡張化のときの窒化範囲

DBDが広がった範囲(試料表面全体)が 窒化してしまった…

局所処理を再現しようとしても……

局所処理時は 対向電極を セラミックで覆っていた

また試料表面全体が窒化してしまった… なんだか均一性が増している!

MEMSへの応用 多品種少量生産

なぜ2種類の処理が起こるのか プラズマ点火の基礎調査が必要

企業への期待

もしはっきりとしたニーズがある場合, 基礎研究からつきあって下されば たいへん助かります.

- ・発明の名称:誘電体バリア放電による 金属表層の硬化方法
- •出願番号 :特願2016-056206
- •出願人

- :大分大学
- ・発明者 : 市來龍大,津留卓斗,喜
 多村圭一,赤峰修一,金澤誠司

- ・H24-H25年 JST A-STEP探索タイプ事業に採択
- ・H27-H28年 JSTマッチングプランナープログ

ラム探索試験事業に採択

•H28年 日立金属(株)と共同研究実施

お問い合わせ先

国立大学法人大分大学 産学官連携推進機構(知財部門)

TEL097-554 - 8517 FAX097-554 - 7740 e-mail chizai@oita-u.ac.jp

バリア放電

新技術説明会

貫通穴の内壁の処理

窒化チタン表面の合成

処理前

処理後

