

プリントやフォトリソグラフィーを用いない シールド微細孔付きガラス基板(TGV)作製方法

Printing and Photolithography-free fabrication method of a sealed TGV

沖縄科学技術大学院大学 数理力学と材料科学ユニット

Mathematics, Mechanics, and Materials Unit

ポスドク研究員

ストフル・ヤンセンス

Postdoctoral Scholar

Stoffel Janssens

デバイス

devices

背景: TGVとは

Background: About TGV

TGV (Through Glass Vias) = 貫通穴を開けた板ガラス

- ・マイクロデバイス製造に使用
- ・ガラスメーカー各社が製造販売

Thin glass plates with through holes, named **T**hrough **G**lass **V**ias (TGVs), are recently available from glass manufacturers and are intended for microdevice fabrication.

TGV付き板ガラス Glass slab with TGVs

TGV付き板ガラス 断面 Cross-section glass slab with TGVs

TGV付き板ガラス 用途例 Use of glass slabs with TGVs

TGV従来技術とその問題点

Existing TGV technology and its problem

既存のTGV製造技術では、TGV基板への膜付けが技術的に難しい

With current technology, only glass slabs with unsealed TGVs are available.

シールドTGV(片側が塞がったTGV)を必要とする用途向けには、転写工程が必要

Then, transfer printing needs to be developed for certain applications that benefit from sealed TGVs.

TGV従来技術とその問題点

Existing TGV technology and its problem

転写 Transfer printing

- a) 薄膜付きガラス基板 Substrate with thin layer.
- b) 薄膜をガラス基板から除去 Removal of thin layer form substrate.
- c) TGV形成後、膜付け Transferring the layer over a TGV.
- d) シールドTGV TGV sealed with a suspended portion of the layer.

転写技術の問題点

- 犠牲基板
- 多くの製造工程が必要
 - 転写後、基板と薄膜の接着が必要

Transfer printing problems:

sacrificial substrate

many process steps

bond between the substrate and the thin film should be made after printing.

新技術の特徴

Our technology

シールドTGV製造方法

- ・転写やフォトリソグラフィー不要
- ・ナノ結晶ダイヤモンド(NCD)を底面の膜付け

We developed a technology **free from transfer printing** and **photolithography** to fabricate TGVs that are sealed with suspended portions of a nanocrystalline diamond (NCD) layer.

新技術の特徴

Our technology

ナノ結晶ダイヤモンドーガラス基板

Nanocrystalline diamond-glass platform

上面図 Top view

鳥瞰図 Bird's-eye view

底面図 Bottom view

光学顕微鏡の画像 optical microscope image

走査型電子顕微鏡の画像 scanning electron microscope image

光学顕微鏡の画像 optical microscope image

新技術の工程

Process of our technology

シールドTGV製造工程

Our Technology

- 1. ガラスのウェットエッチング(フッ化水素酸)→ 確立済み
- 2. 止まり穴の形成(レーザー照射) → 最近確立済み
- 3. 化学蒸着によるNCD膜の成膜 → 確立済みで低コスト
- 4. ガラスのウェットエッチング(フッ化水素酸)→ 確立済み

Wet etching of glass (hydrofluoric acid) → well established Formation of blind holes (laser ablation) → well established Growth of NCD with CVD → well established, low cost Wet etching of glass (hydrofluoric acid) → well established

従来技術とその問題点

Existing technology and its problem

1. 単一細胞培養 Single Cell Culture

問題点

• 細胞は液体のフローを嫌う

Problem

Cells do not like fluid flows

1. シリコン基板デバイス Silicon-substrate devices

シリコンの問題点

- 高価
- 熱膨張係数が調整不可
 - → 他部材との熱不整合
- 不透明

Problems with silicon

Expensive

Coefficient of thermal expansion (CTE) that cannot be tuned

Thermal mismatch with other materials

Optically not transparent

新技術の特徴・従来技術との比較

Key aspects of your technology and comparison with the existing technology

既存の用途と技術的課題 Existing Applications and problems

1. 単一細胞培養 Single Cell Culture 薬液のフロー方向

Flow to deliver drugs

問題点

Problem

・ 細胞は液体のフローを嫌う Cells do not like fluid flows

本技術による解決方法 Solution with OIST technology

多孔質NCD膜 Porous NCD film

→ 開発予定 Needs to be developed

微細孔から薬液供給 Drugs reaches the cells through the pores

細胞がフローを感じない Cells do not feel the flow

新技術の特徴・従来技術との比較

Key aspects of your technology and comparison with the existing technology

既存の用途と技術的課題 Existing Applications and problems

2. シリコン基板デバイス Silicon-substrate devices

シリコンの貫通穴 through silicon via

シリコンの問題点

- 高価
- 熱膨張係数が調整不可
 - → 他部材との熱不整合
- 不透明

Problems with silicon

Expensive

Coefficient of thermal expansion (CTE)

that cannot be tuned

Thermal mismatch with other materials

Optically not transparent

本技術による解決方法

- 安価なプラットフォーム
- 熱膨張係数を調整可
 - →他部材との熱不整合性が小さい
- ガラス、NCD膜は透明

Solution with OIST technology

Platform is inexpensive

Coefficient of thermal expansion of glass can be tuned

Low thermal mismatch with other materials

Glass and NCD film are optically transparent

新技術の特徴

Key aspects of your technology

NCD膜のガラス基板と本技術のメリット

Additional key aspects of the NCD-glass platform and our technology

- NCD膜のガラス基板:高い生体適合性と化学的不活性 NCD-glass platform: high biological and chemical inertness
- NCD膜のガラス基板:高温での利用可(480℃) NCD-glass platform: high temperatures feasible (480 ℃)
- 本技術の応用: SiN、SiC薄膜への応用
 Technology: expected to be extendable to SiN and SiC thin layers

想定される用途

Expected application

例1:単一細胞培養

Example 1: Single Cell Culture

Flow to deliver drugs

想定される用途

Expected application

例2:ホウ素ドープのNCD電極

Example 2: Boron-doped NCD electrodes

マイクロ流路チャンネルの中の細胞等の微小な物体をNCD電極で電気的に検知 NCD electrodes for electrical detection of microscopic objects, like cells, in microfluidic channels

想定される用途

Expected application

例3:ガラス基板デバイス

Example 3: Glass-based devices

NCDガラス基板の加速計 断面(左)、底面(右)

Cross-section (left) and bottom view (right) of an NCD-glass accelerometer

実用化に向けた課題

Challenges for commercialization

ガラスとNCDの間の熱不整合により、NCD膜に**圧縮応力**あり。 MEMS製造の課題

Compressive stress is present in the NCD films due to a thermal mismatch between glass and NCD. For the fabrication of MEMS, this might be problematic.

NCD膜のTGV密閉部分の厚み Height profile of NCD film with suspended portion

実用化に向けた課題

Challenges for commercialization

TGV壁の表面粗さを減らし、透明度を更に上げるため、レーザー照射ではなく**ガラス活性工程**がベター

We are currently using a laser ablation procedure that induces **surface roughness of the TGV walls**. Optimizing this process might reduce light scattering.

レーザー照射工程 Laser ablation process.

暗視野顕微鏡画像:TGV壁が光を散乱

Dark-field microscope image, the walls of the TGVs scatter light.

実用化に向けて

Further development for commercialization

様々な厚みのガラス基板で、直径10~100µmのTGV製作

More development towards fabricating TGVs of diameter ranging from 10 to 100 µm in glass slabs of varying thickness might be appreciable towards commercialization.

企業への期待

Potential ways for technology transfer

特許ライセンス Licensing

• 共同研究: 特定の用途向けに共同開発

Collaborations for specific applications

産学連携の経歴

Industry collaboration experience

2010年-2011年 IMEC(マイクロエレクトロニクス先端研究所、ベルギー)の ダイヤモンド成膜に関するコンサル経験

Consultant for IMEC as diamond growth expert (Leuven, Belgium).

特許 Patent

発明の名称 : ナノ結晶ダイヤモンドガラスプラットフォームと製造方法

原題「Nanocrystalline Diamond-Glass Platform and Method of

Manufacture]

出願番号 : 米国仮出願 62/839,768

出願人 : 沖縄科学技術大学院大学(単独)

発明者: ストフル・ヤンセンス Stoffel Janssens (ポスドク研究員)

エリオット・フリード Eliot Fried (教授)

ダビッド・バスケスコルテス David Vázquez-Cortés (技術員)

アレサンドロ・ジュサーニ Alessandro Giussani (ポスドク研究員)

お問い合わせ先

Contact

沖縄科学技術大学院大学(OIST) 技術移転セクション

TEL: 098-966-8937

FAX: 098-982-3424

E-mail: tls@oist.jp

