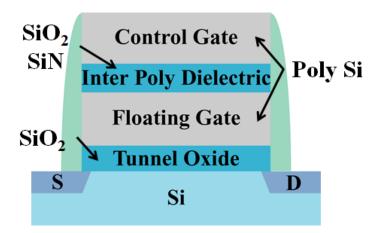


新材料による 革新的強誘電体メモリの創製

東京工業大学 工学院 電気電子系 准教授 大見 俊一郎

2021年11月2日

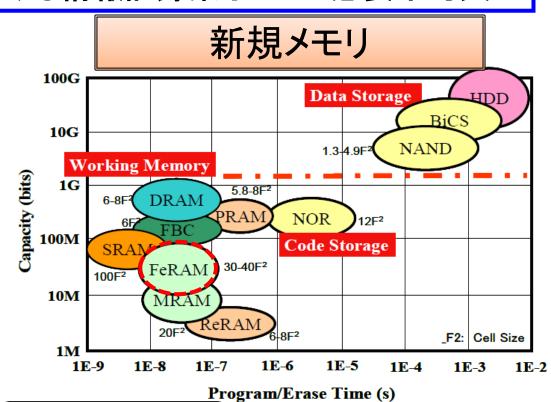
不揮発性メモリの比較と強誘電体メモリ



不揮発性メモリ

あらゆる電子システムにおける情報記録素子として必要不可欠

フラッシュメモリ

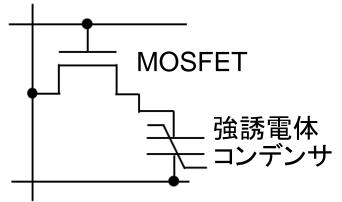

- ◆動作電圧高: ~20 V
- ◆ 動作速度低
- ◆書き換え寿命短

Floating Gate: 70 - 100 nm

微細化困難 3次元集積化積層限界

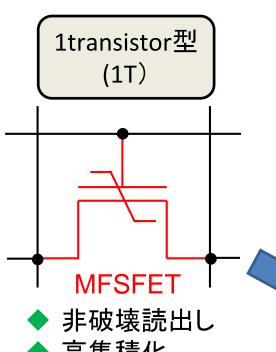
FeRAM 強誘電体メモリ

- ◆ 低電圧動作
- ◆高速動作
- ◆ 高書き換え回数


強誘電体メモリの構成

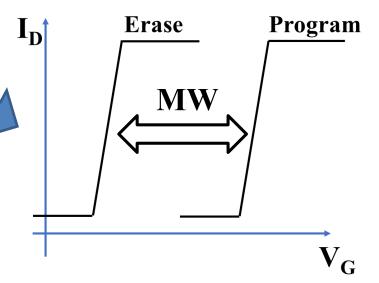
強誘電体

- ◆ 自発分極(残留分極)
- ◆ 抗電界以上の電界印加で分極反転


1transistor/1capacitor型 (1T1C/2T2C)

- ◆ 破壊読出し
- ◆ 集積度低

- Suica、RF-IDタグ
- -16-64 Mbit



◆ 高集積化

- 1958年に提案
- ・実用化されていない

分極*P* "0" 電界*E* "1"

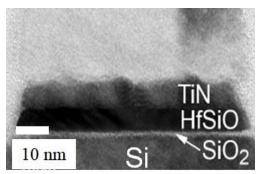
強誘電体薄膜のSi基板上へ直接形成

MFSFET: Metal/Ferroelectrics/Si Field-Effect Transistor

従来の強誘電体材料

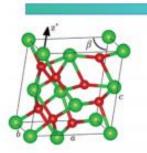
強誘電体	PZT [Pb(Zr,Ti)O ₃] (チタン酸ジルコン酸鉛)	SBT [SrBi ₂ Ta ₂ O ₉] (タンタル酸ビスマス酸 ストロンチウム)	BFO [BiFeO ₃] (ビスマスフェライト)
結晶構造	Pb :Zr/Ti :O	:Sr :Bi :Ta :O	:Bi :Fe :0
メリット	・低温プロセスが可能 ・量産性が高い (富士通で量産中)	・反転電圧が1.8[V]以下 ・電圧が低い為、疲労特性 が向上する。	・Qswが180~220[uC/cm2] とPZTの約5倍。
デメリット	・反転電圧がやや高い。(メリット: データが化け難い)	・Qswが小さい ・プロセスが高温	・新素材であり研究開発中 (☆東京工業大学との共同研究☆

NEDO「強誘電体メモリの研究開発」(東京工業大学 他10社) (研究代表者 石原宏教授、1999-2003)により実用化に貢献

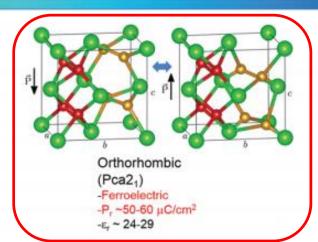

課題:薄膜化困難、Si基板上への形成困難(Bi, Pb等の拡散)

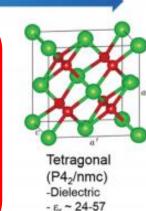
強誘電性酸化ハフニウム(Fe-HfO₂)

新技術説明会 New Technology Presentation Meetings!

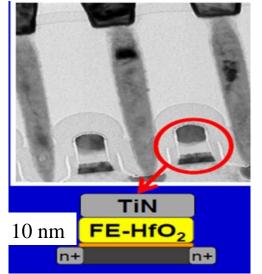

Si上強誘電性Si添加HfO₂

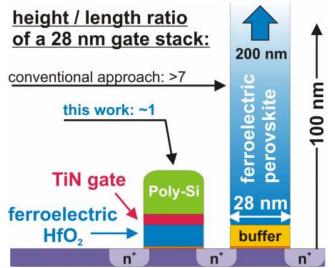
斜方晶(準安定相)





•10 nm級極薄膜化




Monoclinic (P2₁/c) -Dielectric - ε_r ~ 19-25

微細化(28 nm)

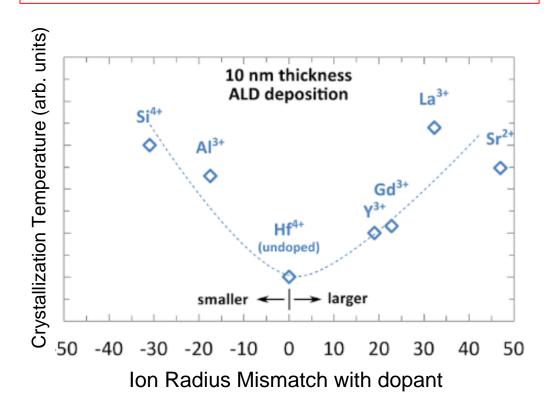
強誘電性HfO2

- •MFSFETの実現
- •微細化、高集積化

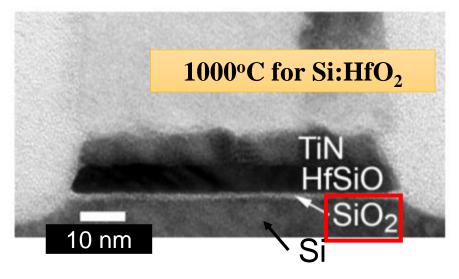
不揮発性メモリの高速化・ 低消費電力化を実現

Fe-HfO₂薄膜のインパクト

Table MM04 - More Moore Memory - NVM Technology Roadmap


Table white - more moore memory - NVM Teenhology Roadmap									
YEAR OF PRODUCTION	2018	2020	2022	2025	2028	2031	2034		
	G54M36	G48M30	G45M24	G42M21	G40M16	G40M16T2	G40M16T4		
Logic industry "Node Range" Lab - ' '	11711	nen	11011	110 411	"1.5"	"1.0 eq"	"0.7 eq"		
IDM-Foundry node labeling 100G					i2.1-f1.5	i1.5e-f1.0e	i1.0e-f0.7e		
Mainstream device for logic	MEGEET	Data	Storage	HDD)	LGAA	LGAA-3D	LGAA-3D		
NVM TECHNOLOGY	(MFSFET)		Bi	CS					
A. FeRAM (Ferroelectric RAM) [1]									
FeRAM technology node – F (nm) [2	king	1.3-4	.9F2 NANI	<mark>'</mark>	45	45	45		
MET1 1/2 Pitch - F(nm)				• - • •	80	80	80		
For DAM collision and forton a in m	6-8F ² D M 5.8	3-8F ²			19	19	19		
FeRAM cell size (um2)	6F PRA	AM NOR) _{12F²}		0.12	0.12	0.12		
FeRAM cell structure [4]					1T1C	1T1C	1T1C		
FeRAM capacitor structure [5]	SRAM	Code Sto	orage		stack	stack	stack		
FeRAM capacitor footprint (µm2) [6]	FeRAM 30-4	10F ²			0.067	0.067	0.067		
FeRAM capacitor active area (µm2) 10M	MRAM				0.067	0.067	0.067		
FeRAM cap active area/footprint rati		M			1	1	1		
Ferro capacitor voltage (V) [9]	20F2 ReRA	6-8F ²		F2: Cell Size	1	1	1		
FeRAM minimum switching charge (1M -	17.0 17.	47 4 47			26.5	26.5	26.5		
FeRAM endurance (read/write cycle 1E-9	1E-8 1E-7	1E-6 1E-	5 1E-4	1E-3 1E-2	>1.0E16	>1.0E16	>1.0E16		
FeRAM nonvolatile data retention (y	Prog	ram/Erase Ti	me (s)		10 Years	10 Years	10 Years		
		•							

- -ロードマップのセル構造は1T/1C
- -2022年以降セル構造の変更が必要
- •MFSFETにより微細化・高集積化を実現


Fe-HfO₂の課題

Zr、Siなどを添加し準安定相に結晶 化させるため、高温熱処理が必要

低誘電率界面層の 形成

低誘電率界面層

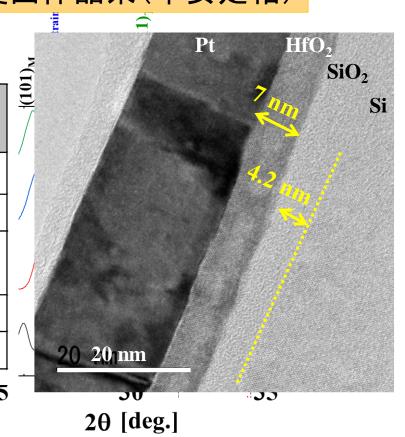
- → 減分極電界によるメモリ特性の劣化 添加元素
- → しきい値電圧のばらつき

ノンドープFe-HfO2

- 低温プロセス
- しきい値電圧ばらつき低減

[1] T. Schenk, Formation of Ferroelectricity in Hafnium Oxide Based Thin Films, Books on Demand (2017). [2] T. S. Böscke et al., IEDM11-550 (2011).

ノンドープFe-HfO₂


反応性スパッタ法における酸素流量比の制御によりSi基板上への形成を実現

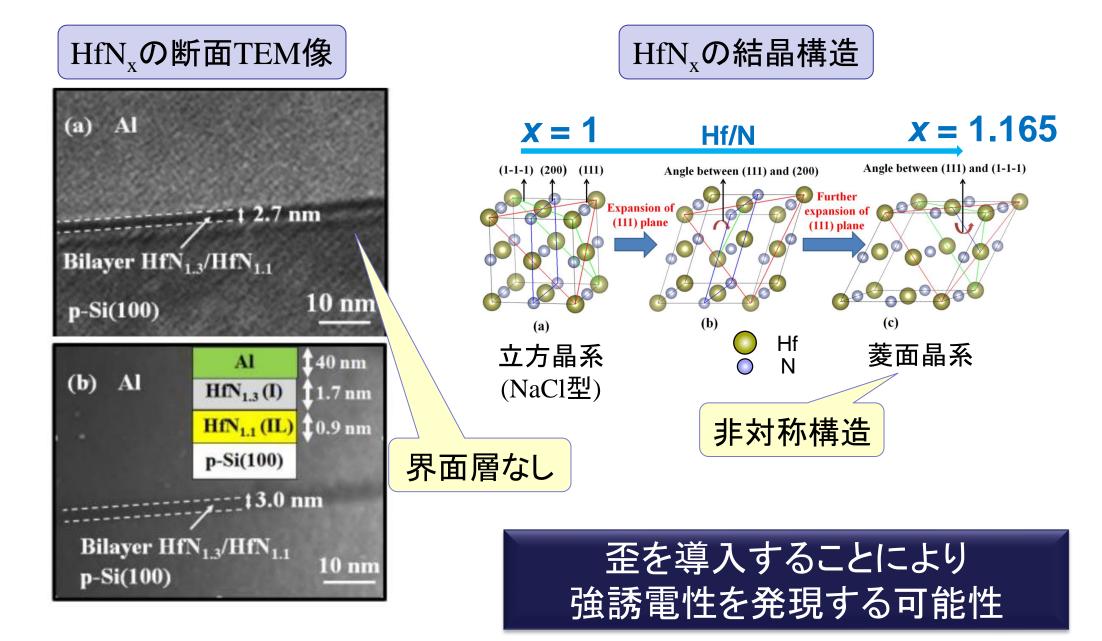
ノンドープFe-HfO₂(5 nm, 500°C)

菱面体晶系(準安定相)

Ferroelectric Undoped-HfO ₂ FET	TiN/HfO ₂ /SiO ₂ (This work)	Pt/HfO ₂ /SiO ₂ [17]	TaN/HfO ₂ /SiO ₂ [18]	
FE-Oxide	HfO ₂ (ALD)	HfO ₂ (sputter)	HfO ₂ (ALD)	
Thickness	6 nm	10 nm	4 nm	
Memory Window (?V _t)	0.5 ∨ (V _{P/E} =±5 ∨)	1.2 V (DC sweep, ±2.5 V)	0.045 V (DC sweep)	
Retention (sec)	> 104	NA	NA	
Endurance (cycles)	5x 10 ⁴	NA	NA	

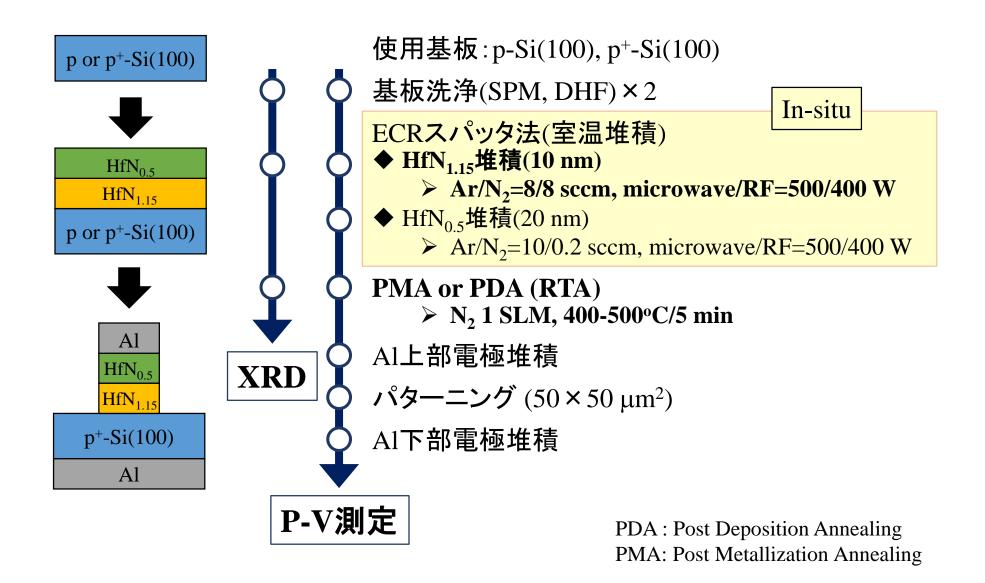
Gate Voltage [V]

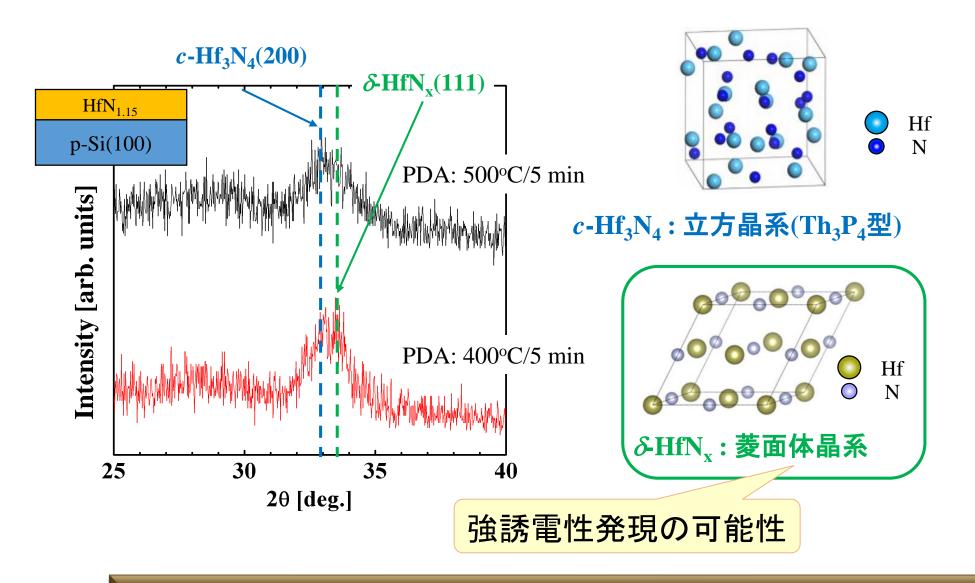
菱面体晶系の結晶がSi基板上で歪を生じることにより強誘電性が発現


^[1] J.W. Shin, S. Ohmi et al, DRC, 29 (2021).

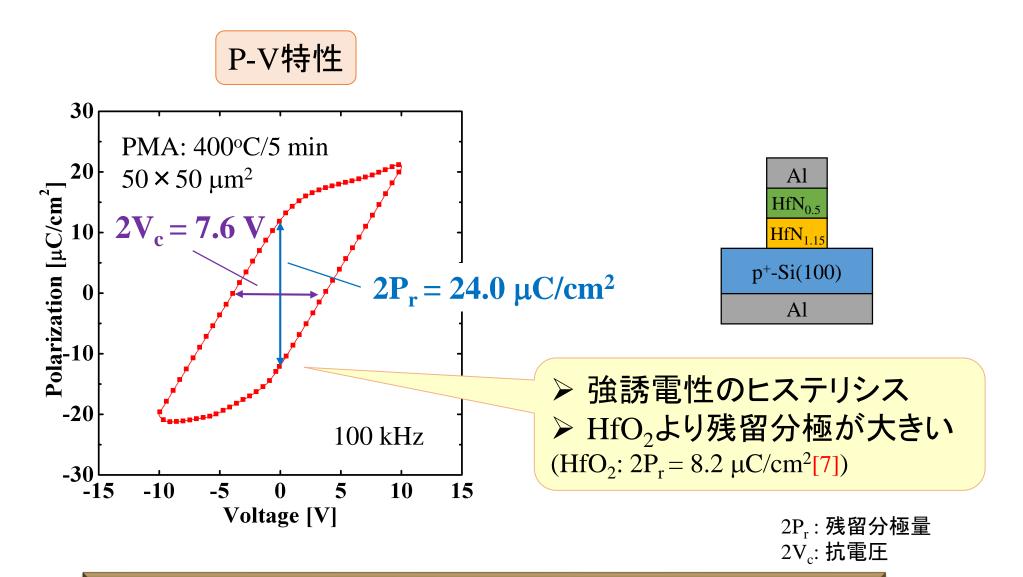
^[2] S. Ohmi et al, IEEE TED, **68**, 2427 (2021).

^[3] J.-D. Luo et al, IEEE EDL, 42, 1151 (2021)


窒化ハフニウム(HfN_x)に関する先行研究


HfNxを用いたMFSダイオードの作製プロセス

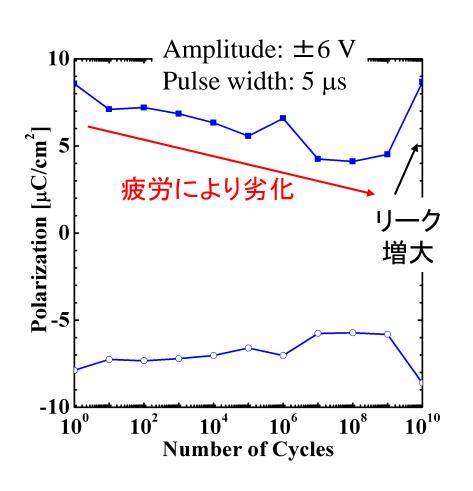
Si(100)基板上に形成したHfN_x薄膜の結晶性

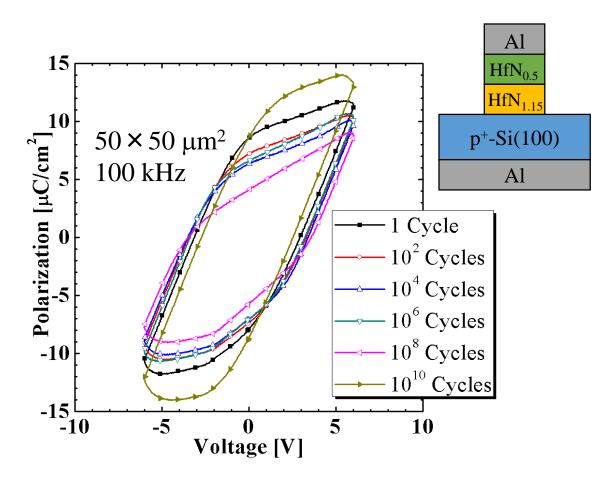

HfN_{1.15}は、400°C/5 minでアニールすると菱面体晶系で結晶化

[1] C. Hu et. al, Scripta Materialia 108, pp.141-146 (2015). [2] Z. Gu et. al, Acta Materialia 90.

[3] S. Ohmi et al, IEEE JEDS (2021). [under review]

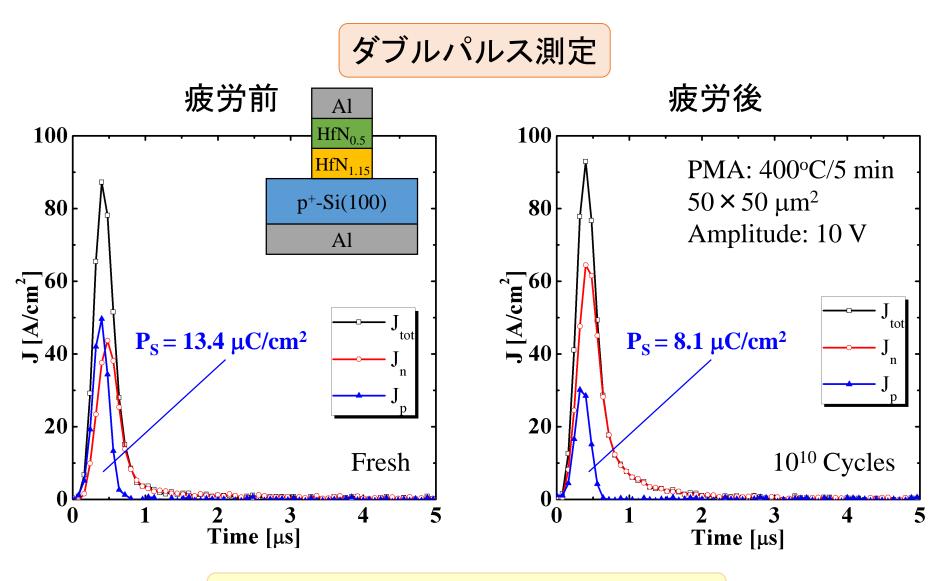
HfN_x薄膜の分極-電圧特性





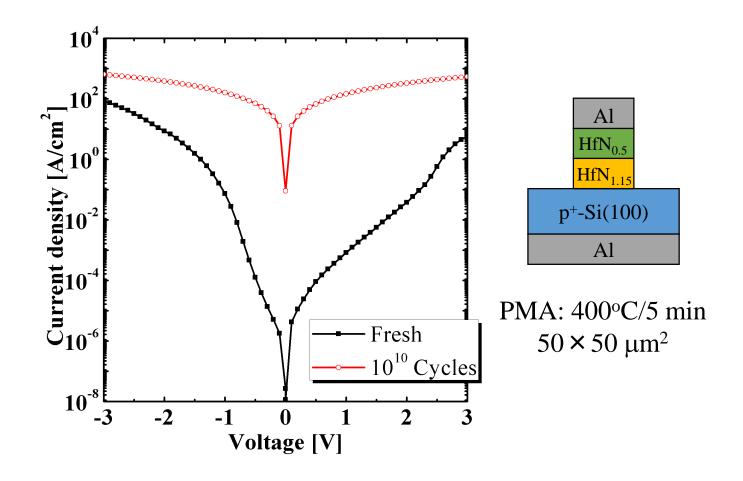
400°C/5 minでアニールしたHfN_{1.15}薄膜が強誘電性を発現

HfN_x薄膜の分極-電圧特性



- ▶ 10⁹回のスイッチングへの耐性
- ▶ インプリント現象なし

疲労特性評価前後のスイッチング電流



▶ 109回パルス印加後に分極量低下

疲労特性評価前後のリーク電流

➤ 10⁹回パルス印加後にリーク電流増大

強誘電性HfN_x(Fe-HfN_x)薄膜の特徴

- Fe-HfO₂の問題点であった、低誘電率界面層の形成を抑制でき、Si基板上への強誘電体薄膜の直接形成に成功した。
- 低誘電率界面層の形成を抑制できたため、保持特性などを向上することが可能となった。

想定される用途

- ・保持特性、疲労特性を向上した1T型強誘電体メモリに適用することで高集積化、低消費電力化のメリットが大きいと考えられる。
- 達成された強誘電性に着目すると、人工知能 回路用のアナログメモリへの応用に展開する ことも可能と思われる。

実用化に向けた課題

- 現在、膜厚10 nmでの強誘電性まで開発済み。 しかし、10 nm以下への薄膜化が未解決である。また、抗電界が3.8 MV/cmと大きい点が 課題である。
- 今後、薄膜化と結晶性の向上について実験 データを取得し、強誘電体メモリを低電圧動 作化していく場合の条件設定を行っていく。
- 実用化に向けて、しきい値電圧制御の精度を 20 mVまで向上できるよう技術を確立する必 要もあり。

企業への期待

- 未解決の薄膜化と結晶性の向上については、 スパッタ形成プロセスと熱処理プロセスにより 克服できると考えている。
- デバイスの集積化、薄膜形成および評価技術 を持つ、企業との共同研究を希望。
- ・また、不揮発性メモリを開発中の企業、新規 薄膜材料分野への展開を考えている企業に は、本技術の導入が有効と思われる。

本技術に関する知的財産権

・発明の名称:強誘電性薄膜の形成方法、

それを備える半導体装置

• 出願番号 : 特願2021-039611

• 出願人 : 東京工業大学

• 発明者 : 大見俊一郎

産学連携の経歴

- 2015年-2017年 素材関連のA社と共同研究実施
- 2021年-2022年 装置関連のB社と共同研究実施

お問い合わせ先

東京工業大学 研究・産学連携本部

TEL 03-5734-2445

FAX 03-5734-2482

e-mail sangaku@sangaku.titech.ac.jp