

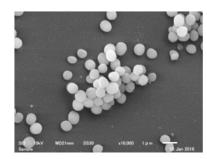
アトピー性皮膚炎を改善する抗菌性脂肪酸の食品微生物生産法

静岡県立大学 食品栄養科学部環境生命科学科 助教 菊川寛史

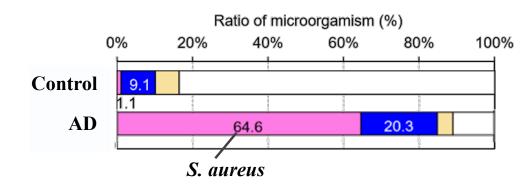
2022年10月25日

アトピー性皮膚炎の対症療法と問題点

- ・皮膚バリア機能の破綻による炎症.
- ・国内で51万人が罹患、年々増加.
- ステロイド外用剤等による対症療法.

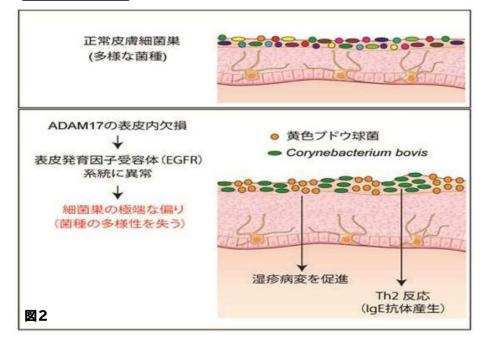

問題•課題

- 〇 皮膚委縮や皮膚感染症など局所副作用
- 〇 遺伝・アレルゲンなど発症要因は複合的
- 〇 根治可能な原因療法が存在しない


微生物アレルゲンの制御①

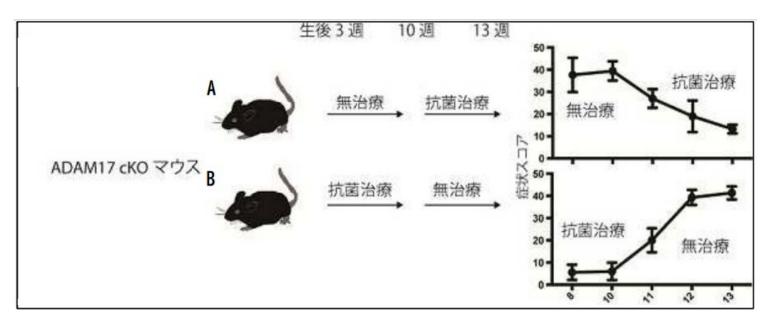
近年、アレルゲンとして皮膚の日和見菌である 黄色ブドウ球菌が、アトピー性皮膚炎の惹起・ 増悪化を引き起こすことが証明された.

黄色ブドウ球菌


罹患者の皮膚菌叢

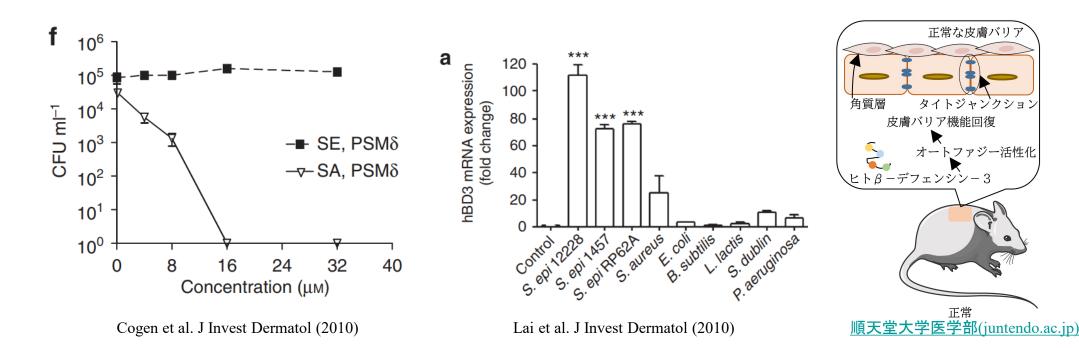
Kong et al., Genome Res. (2012).

Kobayashi *et al.*, *Immunity* (2015). 20150422_nagao.pdf (keio.ac.jp)


マウス皮膚

微生物アレルゲンの制御②

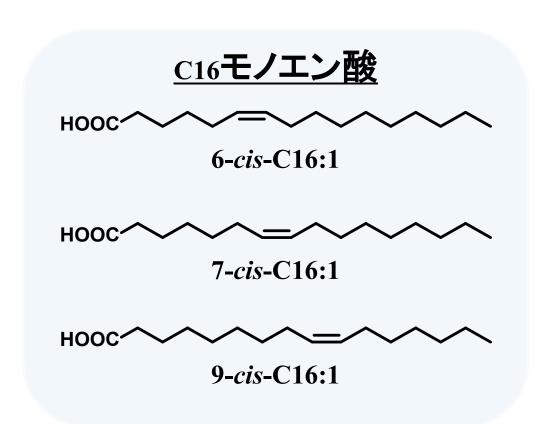
・ 抗生物質による黄色ブドウ球菌の抑制により、寛解が報告.

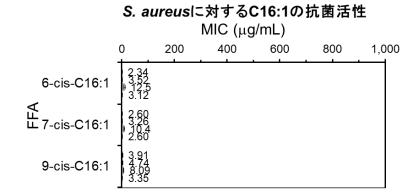

Kobayashi et al., Immunity (2015). 20150422 nagao.pdf (keio.ac.jp)

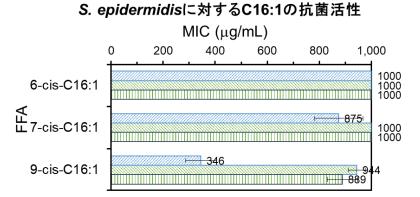
しかし…抗生物質の使用は、有益な皮膚細菌、特に有益な 近縁種のブドウ球菌類(表皮ブドウ球菌など)も死滅 させ、皮膚細菌によるバリア機能が低下.

微生物アレルゲンの制御③

表皮ブドウ球菌は善玉菌として知られ、黄色ブドウ球菌抑制 や皮膚バリア賦活化活性が報告・示唆されている。




→ 黄色ブドウ球菌"だけ"選択的に抑制する必要がある.



アトピー性皮膚炎の次世代治癒法

• C16-価不飽和脂肪酸が黄色ブドウ球菌を選択的に抗菌.

C16モノエン酸の従来製造技術

- 有機合成法では、難燃性の副産物の生成を伴う.
- C16モノエン酸類の天然資源としては、ヒト皮脂、ごく一部の植物油脂、一部の微生物生産法のみである.

ヒトの皮脂

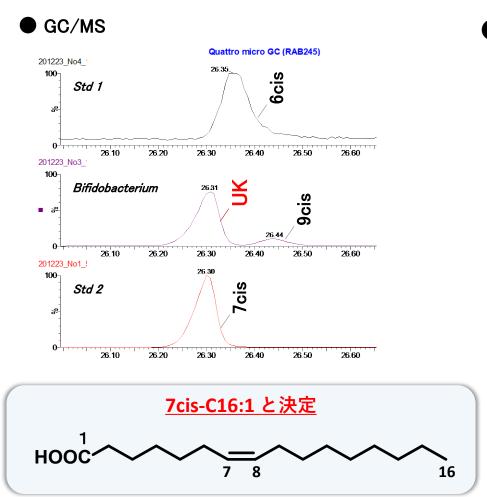
一部寒冷地の植物

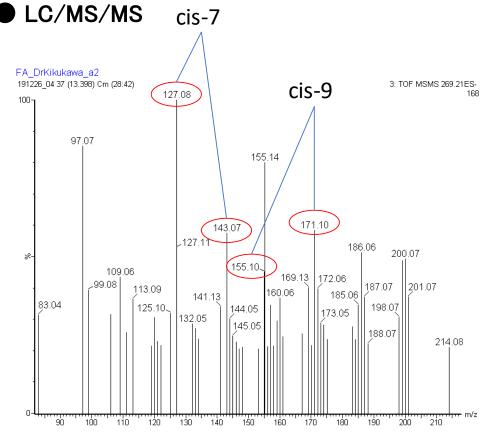
引用:nite.go.jp

BSL2以上の微生物 遺伝子組換え微生物

新技術の内容

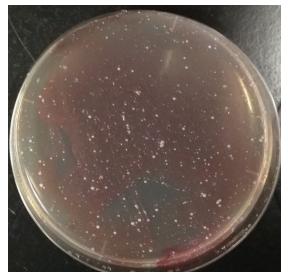
- 食経験豊富で安全性が高いビフィズス菌群にC16モノエン酸の生産を見出した.
- 種々のビフィズス菌株より、 高生産株を選抜した。
- 変異株育種、培養方法など、 C16モノエン酸の高生産に 資する技術を確立した.


Strain	7-cis-C16:1
	(%)
Bifidobacterium #1	0.0
Bifidobacterium #2	0.0
Bifidobacterium #3	1.8
Bifidobacterium #4	0.5
Bifidobacterium #5	0.9
Bifidobacterium #6	2.3
Bifidobacterium #7	2.3
Bifidobacterium #8	0.0
Bifidobacterium #9	0.0
Bifidobacterium #10	0.6
Bifidobacterium #11	0.3
Bifidobacterium #12	0.0
Bifidobacterium #13	0.6
Bifidobacterium #14	2.7
•	,

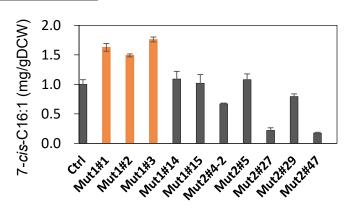

•

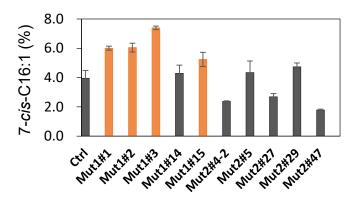
新技術の特徴①

ビフィズス菌がもつC16モノエン酸は7-cis-C16:1



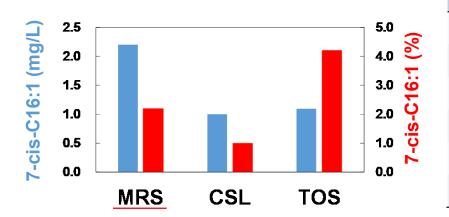
新技術の特徴②


・ 化学変異剤処理に よるC16モノエン酸 高生産株の作出


<u>呈色試薬による選抜</u>

⇒ 選抜株を寄託済

選抜の結果

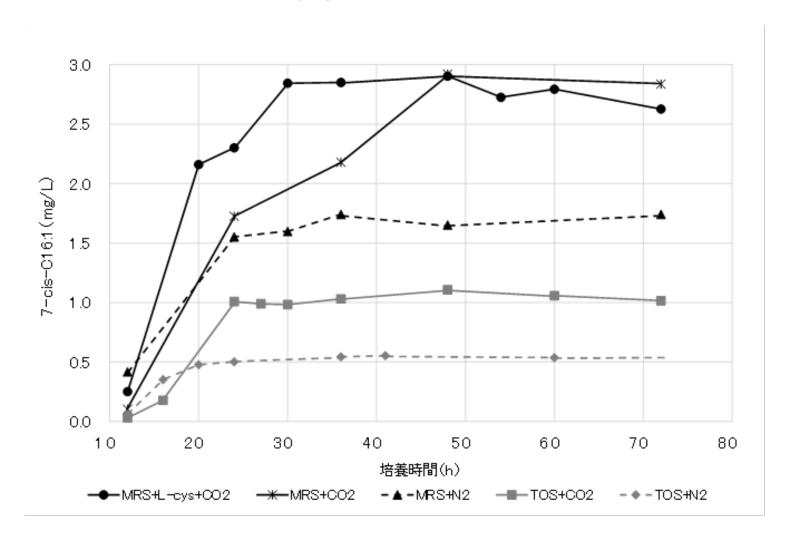


新技術の特徴③

• 高生産培養法を確立.

◎:増加、○:維持

△:減少、×:大幅減



	生育	C16:1		生育	C16:1		生育	C16:1
グルコース	0	0	炭酸Ca	0	\triangle	Polysorbate 80	0	×
トリプトン	0	0	炭酸 K	×	×	Triton X-100	×	×
ペプトン	\triangle	\triangle	炭酸Na	×	×	Tergitol	\circ	\circ
カザミノ酸	\circ	\circ	炭酸水素 K	×	\triangle	Anisidine	\circ	\circ
L-システイン			炭酸水素Na	×	×	Saponin	\circ	\circ
オキサロ酢酸	0	×						

新技術の特徴4

• ガス通気条件による培養法の検討.

想定される効果

- 安全性の高いC16モノエン酸を含む油脂の製造.
- 化粧品に添加するビフィズス菌培養物等に適用することで、 黄色ブドウ球菌を生育抑制し、アトピー性皮膚炎を予防・治癒.
- 皮膚の微生物フローラを整え、保湿効果が期待される。
- C16モノエン酸は黄色ブドウ球菌を抑制するが、表皮ブドウ球菌は抑制しない.表皮ブドウ球菌も黄色ブドウ球菌を抑制するとともに、皮膚バリア機能の賦活化が期待される.

想定される用途

・ 乳液等の化粧品の製造.

ハンドソープ、ボディソープ、家庭用 手指消毒剤といった洗剤・衛生用品.

社会的位置づけ

本技術導入したスキンケアや手洗いにより、アトピー性皮膚炎を予防・治癒.

- ⇒ 特別な生活習慣の追加や製品の購入は必要なく、 そのまま生活習慣の中に置き換えて頂くだけで、 アトピー性皮膚炎の予防・治癒が可能.
- ⇒ 社会問題化するアトピー性皮膚炎の潜在的予防.

実用化に向けた課題

- 抽出原料とする場合、工業レベルでのC16モノエン酸の生産 検討と生産性改善が必要である.
- 実用化に向けて、生産量を現在の数10倍に向上できるよう 技術向上が必要である。
- 実際の皮膚での抗菌性・アトピー性皮膚炎の治癒について 実験データを取得し、化粧品、外用剤や医薬部外品に適用 する条件設定を行う必要がある.

企業への期待

- 生産量について、更なる変異処理、培養改善・スケールアップにより克服できると考えている。工業レベルの生産を目指した共同研究を希望。
- 微生物培養技術を持つ企業、化粧品等の製品化技術を持つ 企業との共同研究も希望。
- 乳酸菌培養物を含有する化粧品や機能性発酵食品を開発 中の企業には、本技術導入が有効と思われる。

本技術に関する知的財産権

・発明の名称:炭素数16のモノ不飽和

脂肪酸の生産方法

• 出願番号 : 特願2022-86879

• 出願人 : 静岡県公立大学法人、

国立大学法人東海国立大機構

• 発明者 : 菊川寛史、鈴木徹

産学連携の経歴

- 2019年-2021年 JST A-STEP機能検証フェーズ
 試験研究に採択
- 2022年- 特許出願

お問い合わせ先

本技術を社会実装していただける企業との連携を 希望しています。ご連絡をお待ちしております。

静岡県立大学 地域・産学連携推進室

TEL 054 - 264 - 5124

FAX 054 - 264 - 5099

e-mail renkei@u-shizuoka-ken.ac.jp