

易酸化金属ナノ粒子の可能性、 機能性材料への展開

産業技術総合研究所 材料・化学領域 磁性粉末冶金研究センター ハード磁性材料チーム 主任研究員 平山悠介

2022年9月8日

アウトライン

口従来の金属ナノ粒子合成プロセス

- ロ新プロセス(低酸素熱プラズマ)の特徴
 - Alを用いたデモンストレーション
 - R-Fe合金系への展開
 - 巨大保磁力を有するバルク磁石の作製
- ロ熱プラズマプロセスの課題

口今後の展開

従来の金属ナノ粒子合成プロセス エリンガム図

作製方法	粉末粒径	°
ボールミリング	~数 μm	8
メカニカルアロイイング	~0.01 μm	-100 - 2/3
ジェットミル	~1 µm	313Fet0
		-150 Kca
ガスアトマイズ	10 µm ~	0d u 200
酸化物合成+水素還元	0.01 μm~	
酸化物合成+Ca、Mg還元	0.1 μm~	-250 2N910
溶融塩金属粒子合成	0.1 μm~	2Ca*
熱プラズマ	0.01~0.3 μm	-300
アークディスチャージ	0.01~数 μm	-1500
アークプラズマ	0.01~数 μm	

K. C. Sabat et al., Plasma Chemistry and Plasma Processing **34**, 1 (2014).

Temperature / °C

国立研究開発法人產業技術総合研究所

4

従来の金属ナノ粒子合成プロセス

作製方法	粉末粒径	0
		1 1680 1 mm
ボールミリング	~数 μm	50 112Fe3O4 H1+03-2140
メカニカルアロイイング	~0.01 μm	-100 2/3Fe+O2 2Fe+O2
ジェットミル	~1 μm	215Fe+O2 2110C1 02 200 P203
ガスアトマイズ	10 µm ~	21341203
酸化物合成+水素還元	0.01 μm~	413A1+02
酸化物合成+Ca、Mg還元	0.1 μm~	-250 2N9+03 200
溶融塩金属粒子合成	0.1 μm~	803-02- All
熱プラズマ	0.01~0.3 μm	
アークディスチャージ	0.01~数 μm	-1500
アークプラズマ	0.01~数 μm	
		-1550

K. C. Sabat et al., Plasma Chemistry and Plasma Processing **34**, 1 (2014).

Ter

国立研究開発法人產業技術総合研究所

新プロセス:<u>低酸素</u>熱プラズマプロセス

AI ナノ粒子の低温燒結

希土類合金(永久磁石:R-Fe(Co)系)への応用

国立研究開発法人 産業技術総合研究所 Processing 34, 1 (2014).

粒径 v.s. 保磁力

粒径が小さくなるにつれて大きな保磁力が得られているが・・ R-Fe系の100nm程度の粒子を得ることは非常に難しい 特に異方性(結晶方向が揃った)の微細構造の制御が難しい

強磁性化合物の永久磁石材料としてのポテンシャル

Y. Shimizu et al., IEEJ Journal of Industry Applications, 6 (2017) 401-408.

熱プラズマプロセスで希土類磁石粉末を作製する ~実験条件/環境~

<u>コールドクルシーブル</u>(スカル)ガスアトマイズによる Sm、Nd金属粉末の合成

原料そのものが坩堝となる

CCGA-0.8、シンフォニアテクノロジー製

熱プラズマプロセスによる得られた 希土類磁石粉末

Y. Hirayama et al., JALCOM 873 (2021) 159724.

準安定NdFe合金ナノ粒子

K. Park, Y. Hirayama et al., JALCOM 882 (2021) 160633.

SmCo合金ナノ 粒子

数値計算による粒子生成過程可視化

数値計算によって、合金粒子に加えコアシェル粒子の 合成も示唆され、実際に観測された

K. Park, Y. Hirayama et al., JALCOM 882 (2021) 160633.

合金ナノ粒子

巨大保磁力を有するSmCoバルク磁石

900℃で焼結した試料で4 MA/m以上の巨大保磁力が得られた

K. Park, Y. Hirayama et al., Scripta Materialia, 218 (2022) 114847.

巨大保磁力を有するSmCoバルク磁石

高温特性も非常に良好であり、超高温(200℃以上)の環境でも使用可能

省希土類高耐熱ポストネオジム磁石となり得る化合物は?

Nd₂Fe₁₄Bを凌駕するポテンシャルを有する化合物は 5元系以上の多元系であることが多く組成制御が難しい

国立研究開発法人產業技術総合研究所

今後の課題

現状(2元系) Sm-Co、Sm-Fe-N 今後:多元系への展開 SmZrFeCoTi SmYFeCoTi SmZrFeCoN 筆 課題:多元系合金の組成制御 1. プロセスの深化 シュミレーション&機械学習を駆使 2. 異方性バルク磁石化 ナノ粒子のハンドリング技術の高度化

低酸素熱プラズマプロセスで作製できる合金ナノ粒子

- 易酸化金属ナノ粒子の作製プロセスは非常に限られる
- 低酸素熱プラズマプロセスはこれまで作製できなかった金属(合金)ナノ粒子を 合成/ハンドリングできる可能性を有する

本技術に関する知的財産権

- 発明の名称:準安定単結晶希土類磁石微粉及びその製造方法
- •出願番号 : PCT/JP2020/011285 (WIPO)
- 出願人 : 産業技術総合研究所
- 発明者 : 平山 悠介、細川 明秀、高木 健太
- 発明の名称:異方性磁石微粒子およびその製造方法
- •出願番号 : PCT/JP2021/027307 (WIPO)
- 出願人 : 産業技術総合研究所
- 発明者 : 平山 悠介、**Park Kwangjae**、劉 崢、高木 健太

お問い合わせ先

国立研究開発法人 産業技術総合研究所 スタートアップ推進・技術移転部 技術移転室

TEL:029-862-6158 e-mail:aist-tlo-ml@aist.go.jp