

機能性透明結晶育成 における偏析制御と 貴金属坩堝フリー化

山梨大学 大学院総合研究部 工学域 物質科学系 クリスタル科学研究センター 綿打 敏司

本日の内容

- 単結晶材料の量産化技術の現状と問題点
- 坩堝不要の単結晶製造法の現状と問題点
- 集中加熱条件の検討とその効果
 - 集光位置の効果 ルチル(TiO₂)の場合
 - 集光鏡の傾斜効果 ルチル(TiO₂)の場合
- 酸化物ガーネット結晶(Pr添加Lu₃Al₅O₁₂)の育成
 における問題点と改善
- ・まとめ

単結晶材料と量産法

物質名	組成式	製法	坩堝
シリコン	Si	引上法/rf-FZ法	石英(SiO ₂)
サファイア	AI_2O_3	引上法/キロプロス法	モリブデン(Mo)
水晶	SiO ₂	水熱法	
ガリウムひ素	GaAs	引上法/ブリッジマン法	窒化ホウ素(BN)
ニオブ酸リチウム	LiNbO ₃	引上法	白金(Pt)
タンタル酸リチウム	LiTaO ₃	引上法	イリジウム(Ir)

多くの単結晶材料が引上法やブリッジマン法など原料のすべてを**坩堝中**に 一旦溶融し,その一部から結晶化させる**正規凝固過程**を用いて量産

引上法

量産法の模式図(正規凝固過程)

ブリッジマン法 キロプロス法

正規凝固過程の特徴

利点

- ・良質な大口径結晶を製造 しやすい.
- 結晶材料の量産で実績が あり、信頼性がある
- Si, Al₂O₃, GaAs, LiNbO₃, LiTaO₃など….

Si: ~400 mm ϕ

欠点

- 融液保持に坩堝が必須
 坩堝材Irの例
- ~2,000円/g(2010)⇒~20,000円/g(2022)
- 偏析制御が困難

坩堝材の消耗とドーパントの偏析

東北大吉川教授研究グループ

従来の坩堝不要の単結晶製造法 一浮遊帯溶融(Floating Zone: FZ)法一

高周波誘導加熱式(rf-FZ) 光学(赤外線集中)加熱式(OFZ)

- 主な量産結晶はSi: ~200 mm Ø
- 導電性のない物質の加熱 溶融は困難

- 導電性がなくても加熱可能 (汎用性が大きい.)
- 偏析制御が可能
- 大口径化が困難

TiO₂: 13 mm ϕ , Si: 15 mm ϕ , La₂CuO₄: 6 mm ϕ

発表者の取り組む従来技術(OFZ法) と量産技術(正規凝固)の比較

OFZ法の特徴

- 坩堝が不要
 ・原理的に坩堝汚染なし
- 偏析制御が可能
 均一組成の固溶体結晶の育成
- ・ 融液(溶融帯)が不安定
- 育成結晶の大口径化が困難
- 量産の実績は限定的(TiO₂, LaB₆など)

量産技術化への課題

- 溶融帯の安定保持技術の確立
- 育成結晶径の拡大技術の確立

正規凝固の特徴

- ・坩堝が必須
 ・坩堝材の混入懸念
- •偏析制御が困難
 - •固溶体結晶では組成が不均一
- •融液の安定保持が容易
- •育成結晶の大口径化が容易
- •量産技術として大きな実績(Si,

Al₂O₃, GaAs, LiNbO₃など)

赤外線光源と回転楕円面鏡 の組合せによる局所加熱

- ・結晶等の回転軸上
- ・光源と同一水平面内

期待 ・大口径化技術の開発によ る量産技術化

集中加熱条件の工夫

従来の集中加熱 立面図

回転楕円面鏡の傾斜と移動 傾斜角(*θ*)と鏡位置(*MP*)を変化

ルチル(TiO₂)の場合

- 傾斜(*θ*)の効果
- •鏡位置(MP)の効果
- 鏡位置(MP)と傾斜(θ)の組合せ効果

傾斜(*θ*)の効果

急冷固化した溶融帯近傍の垂直断面に おけるY分布図 Yは意図的に添加

•傾斜角度の増加に伴って界面形状は系統的に変化

 $\theta = 0^{\circ}$

EPDに対する傾斜(*θ*)の効果

Periphery

Center

100 µm

I V KU

 $\theta = 20^{\circ}$

 $\theta = 10^{\circ}$

Radius Position /mm

 育成結晶のEPDは の増加に伴って低減

Cryst. Growth Des., 10 (2010) 3929.

従来OFZ法における原料径の限界

*MP=*0 mm(集光位置が回転軸上) 定格ランプ出力:1.5 kW×4 θ=0.0°(ランプと集光位置が同一水平面内)

育成方向

10 mm

鏡位置(*MP*)の効果 θ=0.0°, 原料径:~16mm

10 mm

JCG, 496-497 (2018) 69.

鏡位置(MP)と原料径の関係 θ=0.0° ^{定格ランプ出力:1.5 kW×4}

JCG, **496-497** (2018) 69.

鏡位置(MP)と原料径の関係 θ =7.5,10°

JCG, 571 (2021) 126257

ルチルのFZ育成における集中 加熱条件の効果のまとめ

•傾斜角(*θ*)の増加により,

固液界面形状の凸度が系統的減少し,溶融帯が安定化された.

エッチピット密度(EPD)が系統的に減少した.

•鏡位置(*MP*)の増加により、利用可能な原料径を増加さ せることができた.

•育成結晶径を25mmまで増大させることができた.

ルチルを含め取り組んだ物質の結晶径に関する状況

 TiO_2 : 13 mm $\varphi \Rightarrow$ 25 mm φ , Si: 15 mm φ , \Rightarrow 50 mm φ ,

 La_2CuO_4 : 6 mm $\varphi \Rightarrow 10$ mm φ

Pr添加Lu₃Al₅O₁₂のFZ育成^{θ=0°}

10 mm

10 mm リング状クラック

結晶断面

急冷固化 育成中 急冷固化体

垂直断面

凹状結晶-融液界面

J. Flux Growth 15, (2021) 28.

Pr添加Lu₃Al₅O₁₂のFZ育成における 下方傾斜 =-10° 時開2022-134428 特開2022-134428

の抑制

急冷固化 育成中

急冷固化体

の平坦化

J. Flux Growth 15, (2021) 28.

発表者によるOFZ法の進展

OFZ法の欠点

- 融液(溶融帯)の安定保
 持が困難
- 育成結晶の大口径化
 が困難

OFZ法の改善

- •鏡傾斜による界面形状 制御に基づく溶融帯の 安定化
- ・鏡位置による利用可能
 な原料径の拡大
 ⇒溶融帯の安定保持と
- 育成結晶径の大口径化

実用化に向けた課題と企業への期待

まり一層の大口径化技 より一層の大口径化技 装置開発支援 ・現有技術を用いた結晶 ・結晶材料の提案 ・育成結晶の欠陥及び特 ・評価支援

想定される用途と本技術に関する 知的財産権

想定される用途

- •融液の反応性が高く, 適切な坩堝がない結晶 材料の育成
- •坩堝コストの高い結晶 材料の育成
- ・偏析制御が必要な固溶
 体や分解溶融化合物の
 結晶の育成

本技術に関する知的財産権

・特開2022-134428
下方傾斜による界面形
状制御技術
・特開2016-147800
一層の大口径化技術

お問い合わせ先

山梨大学 研究推進·社会連携機構 URA・社会連携センター TEL: 055-220-8758 FAX: 055-220-8757

e-mail : renkei-as@yamanashi.ac.jp

お問い合わせを心待ち にしております.