

1

レーストラック型ループプラズマによる高速表面改質

金沢大学 理工研究域 電子情報通信学系 教授 田中康規

2023年8月17日

4

熱プラズマ

oガス温度とラジカル密度が非常に高い ⇒ 高反応性

誘導熱プラズマ

○無電極で熱プラズマを生成 ⇒ 熱プラズマ中の不純物が少ない

材料プロセスへの応用が期待(応用例:ナノ粒子生成 etc.) ⇒<u>表面改質:超高速処理&材料への不純物混入が少ない</u> Plasma Substrate

酸化処理(高速表面改質の一例)

従来技術とその問題点

酸化膜の応用例:半導体デバイスの絶縁膜

現在の酸化処理技術

本研究内容(従来技術の課題への新技術による対応)

技文
们記
切云 Technology Presentation Meetings _____4/24___

本研究の目的

<u>ループ型/レーストラック型誘導熱プラズマ</u>による基板<u>全体の一様</u>な酸化膜生成

基板スライド機構付ループ型誘導熱プラズマシステム

いずれの圧力においても2インチ基板が設置される-25 < X < +25 mmの範囲で
 比較的一様にO原子が分布
 ⇒ 基板上に,ある程度一様なAr/O₂誘導熱プラズマが生成

▶実際に、ループ型Ar/O2誘導熱プラズマをSi基板に照射し、2次元酸化試験

酸化膜厚の2次元分布(酸化速度評価)

New Technology Pr

XPS分析による組成評価

新技術説明会 tww.Technology Presentation Meetingsl 10/24 実験条件(押し付け効果の検討)

目的:ガス吹付けによる熱プラズマ押し付け効果 ⇒ 生成酸化膜の一様性を向上

11/24

生成酸化膜の様相(押し付け効果の検討)

➡ループ型誘導熱プラズマをSi基板だけでなく<u>SiC基板</u>の表面酸化にも応用する試み

生成酸化膜の様相(SiC基板の表面酸化への適用)

 ・基板全体にわたり酸化膜が生成(約3 minの工程で基板両端付近では140 nm)
 ・酸化速度: <u>17.6 nm/min</u>(熱酸化法の17倍) ⇒ <u>高速</u>酸化処理が実現
 従来法の17倍の
 酸化速度

 酸化速度

➡「ループ型誘導熱プラズマ」をSiC基板の表面酸化に適用可能

<u>温度分布&[原子状酸素O]密度分布</u>に対する<u>酸化膜の一様性</u>への影響を 数値解析的に検討できれば有益

しかし、熱プラズマによる酸化処理のモデリング例は少ない...

→ <u>熱プラズマ手法</u>による基板表面の酸化シミュレーションモデルを<u>構築</u>

酸化シミュレーションの計算方法

流出する部分に対応
 う 熱流束が大きいと仮定
 ○ 流出
 (電磁熱流体解析の結果を参考)

● 0.70
 ● 多孔質セラミックからO₂ガスが
 ● 流出する部分に対応
 ⇒ [原子状酸素]密度が大きいと仮定

Si substrate

Ar/O₂ plasma

o 熱プラズマの適用で考慮すべきこと:温度&[原子状酸素O]密度が局所的に分布
 ⇒Si基板上部から<u>温度&[原子状酸素O]密度</u>を定義した擬似的な熱プラズマを照射

◦ 擬似的な熱プラズマをY軸方向に0.25 mm/sの速度でスキャン

酸化シミュレーションの計算結果

<u>局所的な高温・高密度熱プラズマを照射すると、どんな温度履歴をたどるのか検討</u>

「•熱プラズマが照射されている所でのみ<u>局所的</u>に基板温度が上昇

.. 基板の<u>端部分</u>で最も基板温度が高い状態 [理由①:照射した熱プラズマの温度分布が両端で高い 理由②:基板の端からガスへの熱伝達が小さい

 基板の端において酸化膜厚が最も厚い(実験的な結果とも定性的に一致)
 理由:基板表面の温度が大きく影響

 本数値解析モデルはある程度妥当性あり

本研究の目的・内容

研究内容

数值解析

実験

目的 <u>プラズマ押し付け効果</u>による一様な表面窒化処理に適した 新形状の誘導熱プラズマトーチの開発→レーストラック型

熱流束およびN原子束の増加 ⇒窒化速度向上

※ICTP:誘導熱プラズマ

- ・3次元電磁熱流体解析による新形状のトーチの検討
- ・反応論的非平衡を考慮した改良レーストラック型Ar/N₂ ICTPモデルの構築
- ・改良レーストラック型トーチの作製およびAr/N₂ ICTP維持試験
- ・改良レーストラック型 Ar/N_2 ICTPの分光観測 $\Rightarrow N_2^+$ および N_2 回転・振動温度を評価
- ・改良レーストラック型 $Ar/H_2/N_2$ ICTPを用いた短冊状Si基板の窒化試験

計算結果(ガス温度分布)

新技術説明会 ew Technology Presentation Meetingst 17/24

・一様な基板への吹付速度

改良レーストラック型の方が一様な表面改質に適切

Ar/N₂ICTP維持試験および分光観測の実験条件

Ar/N₂ ICTPの発光様相

新 New 1	技	術	説	B tion M	
			10	9 /'	24

旧レーストラック				
入力電力	6 kW			
上部ガス流量 Q_1	Ar 1.0 slpm			
中央部ガス総流量	Ar 1.0 slpm			
Q_2	N ₂ 0.1 slpm			
圧力	7.5 Torr			

改良レーストラック

入力電力	6 kW
上部ガス流量 Q_3	Ar 1.0 slpm
中央部ガス総流量	Ar 0.6 slpm
Q_4	N₂ 0.1 slpm
圧力	10 Torr

- 石英管内⇒紫色の弱い発光⇒Ar ICTP
- ・ <u>基板上空間</u>⇒白紫色の強い発光⇒<u>Ar/N₂ ICTP</u> → 分光観測

改良レーストラックの方が一様な発光がx方向に伸びている

窒化後基板表面様相, XPS分析結果

N/Si比, O/Si比のx方向一様性

まとめ1

新技術の特徴

の酸化速度

一様性向上

従来法の17倍 の酸化速度

本研究の目的

ループ型・レーストラック型誘導熱プラズマによる基板全体の一様な酸化膜生成

本研究の内容

- <u>1. 基板スライド機構付「ループ型誘導熱プラズマ」の開発</u> 基板全体にわたる2次元酸化が可能
- 2. 「ループ型誘導熱プラズマ」を用いたSi基板の2次元酸化試験
 - 従来法の10倍 ○酸化速度100 nm/min前後 ⇒ 高速酸化処理が実現(従来法の10倍)
- 3. 押し付け効果(独自手法)による一様な酸化膜を生成する試み ○ 押し付け効果 ⇒ 生成酸化膜の一様性が向上(η = 10.4%)
- 4. 「ループ型誘導熱プラズマ」をSiC基板の表面酸化へ適用 SiC基板への適用可能
 - 酸化速度17.6 nm/min前後 ⇒ 高速酸化処理が実現(従来法の17倍)
- 5. 熱プラズマ手法によるSi基板表面の酸化シミュレーションモデルを構築
 - 熱プラズマの大きな特徴である温度&[原子状酸素O]密度を考慮

6. 新型「レーストラック型誘導熱プラズマ」の開発

改良レーストラック型<u>Ar/H₂/N₂ ICTP</u>を用いた短冊状Si基板の窒化試験 Ο ⇒90 mmにわたって窒化可能がつ長さ70 mmに一様な窒化膜生成

まとめ2

- ・従来技術とその問題点
- 既に実用化されている熱酸化法・イオン窒化法には表面改質速度が遅い問題がある。

・新技術の特徴・従来技術との比較

新技術ループ型/レーストラック型熱プラズマ法は表面改質速度が 従来法の10-20倍速く,プロセス時間の短縮が見込まれる。

・想定される用途

- ・酸化膜生成(半導体ゲート材料等)
- ・半導体におけるドーパントの活性化のアニーリング
- ・窒化膜生成(切削工具等)

・実用化に向けた課題

処理の大面積化・一様性の更なる向上など

・企業への期待

改質処理表面の評価, 改質処理の適用考察など

・本技術に関する知的財産権

- 発明の名称 : プラズマ発生装置およびプラズマ処理方法
- 出願番号 : 2022-108228
- 出願日 : 2022-07-05
- 出願人 : 金沢大学 発明者 : 田中康規

まとめ3

新技術説明会 w Technology Presentation Meetings 24/24

・産学連携の経歴

- 2004年-2023年 A社様と共同研究実施
- 2005年-2023年 B社様と共同研究実施
- 2008年-2023年 C社様と共同研究実施
- 2011年-2020年 D社様と共同研究実施

などの共同研究を実施。

- 2011年-2012年 JST A-STEP F S ステージ探索タイプ採択
- 2012年-2013年 JST A-STEP FSステージ探索タイプ採択
- 2019年-2020年 JST A-STEP機能検証フェーズに採択

・お問い合わせ先

金沢大学 ティ・エル・オー

- TEL 076-264-6115
- FAX 076-234-4018
- e-mail info@kutlo.co.jp