

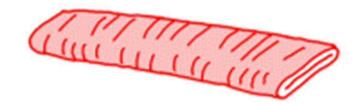
2023年12月5日

螺旋翼を用いた 軸方向マルチ面波動伝播装置

九州工業大学

大学院工学研究院 機械知能工学研究系

教授 永岡 健司


背景

波動の利活用

- 振動が周囲へ伝播する現象
- 生物の機能にも広く応用 例)生物の消化器官,ミミズの体節

波動伝播

腸管の蠕動運動

©基礎医学教育研究会

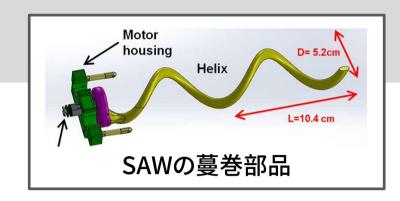
波動伝播の機構を具現化して工学的に応用

従来技術

先行技術の例:回転運動を波動に変換する機構

	SAW [1]	軸方向波動ホイール機構 [2]	多重螺旋回転装置 ^[3]	粒状体搬送機構 [4]
	©Ben Gurion Univ.	©東北大学 And Unreled Morenett	©東北大学	©九州工業大学
要点	1) 蔓巻状の回転部品 2) 1) を覆う多リンク部品 → 1平面波動	1) 蔓巻状の回転部品(×6) 2) 1) を覆う多リンク部品 3) 1) を連動する歯車機構 → 6平面波動による空間波動	1) 蔓巻状の回転部品(×6) 2)1)を覆うメッシュチューブ 3)1)を連動する歯車機構 ➡ 6円形面波動による空間波動	1) 蔓巻状の回転部品(×2) 2)1)を覆う多リンク部品 3)1)を連動する歯車機構 → 2平面波動による空間波動
特徴	・波動部を<mark>密閉</mark>可能・リンクによる波形状保持	・波動部を<mark>密閉</mark>可能・リンクによる波形状保持・全方位の波動生成	・波動部を <mark>密閉</mark> 可能 ・リンクによる波形状保持 ・全方位の波動生成 ・弦巻状の回転部品の高強度	・波動部を<mark>密閉</mark>可能・リンクによる波形状保持・全方位の波動生成
技術的難点	・1面のみの波動伝播・波動外部に駆動源・蔓巻状の回転部品の低強度	・波動外部の歯車機構・波動外部に駆動源・蔓巻状の回転部品の低強度・SAWが基本	・波動外部の歯車機構・波動外部に駆動源・平面波動は生成不可	・波動外部の歯車機構 ・波動外部に駆動源 ・蔓巻状の回転部品の低強度 ・SAWが基本

- [1] Zarrouk et al.: Bioinspiration & Biomimetics, 2016.
- [2] 西村 他: ロボティクス・メカトロニクス講演会, 2018.
- [3] Watanabe et al.: IEEE Robotics and Automation Letters, 2020.
- [4] 赤星, 永岡: ロボティクス・メカトロニクス講演会, 2020.



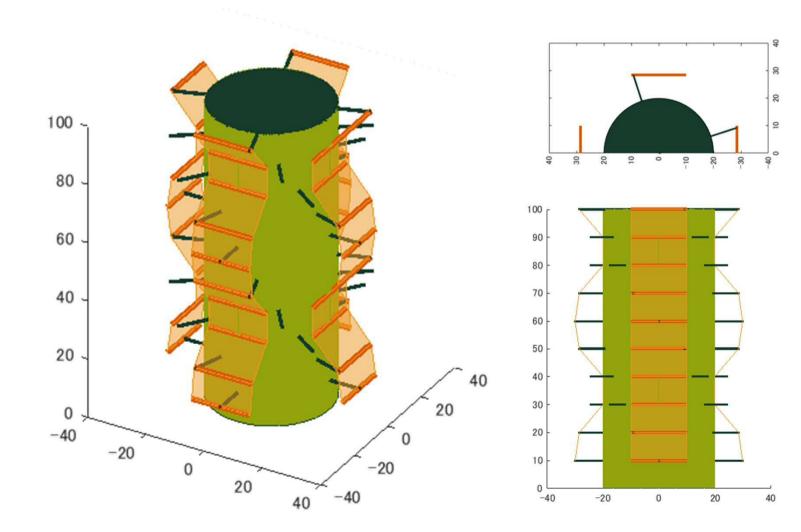
従来技術における課題

1. 蔓巻状の螺旋回転部品は耐久性に劣る

- 2. マルチ面波動の生成には,波動伝播機構を外周に複数配置して, ギア機構で連動が必要なため、機構本体が大型化する
- 3. 螺旋回転部品の外部に歯車やモータを配置する必要がある

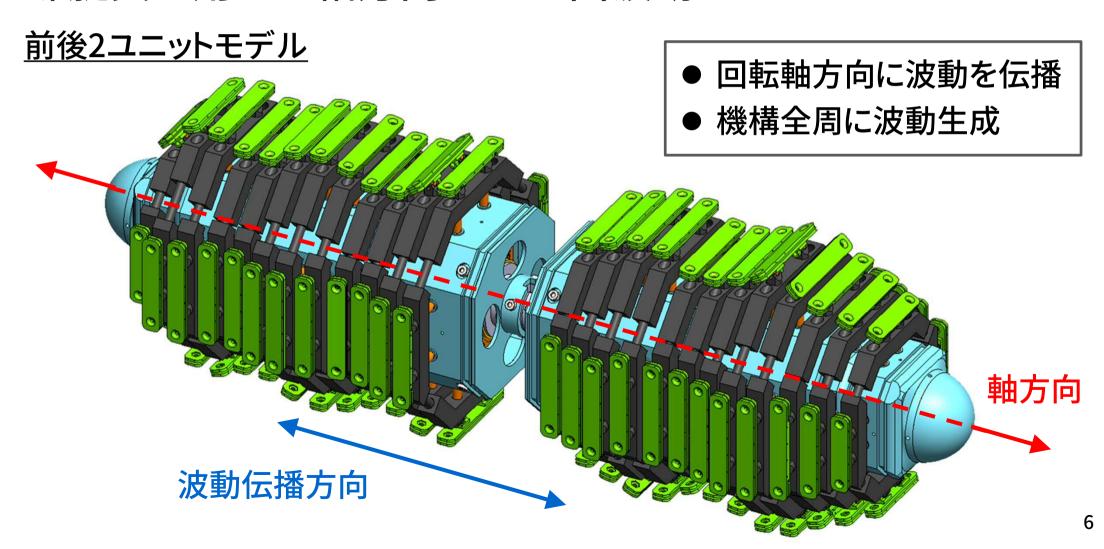
本技術

回転モータを内蔵した単一の螺旋翼を用いて、 回転軸方向への波動伝播メカニズム



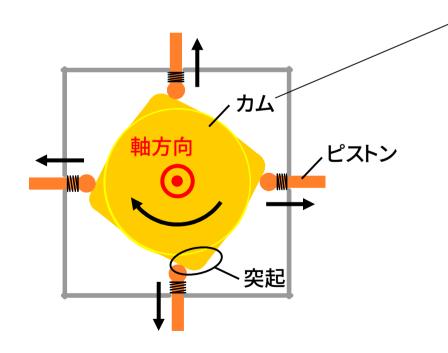
新技術の概要

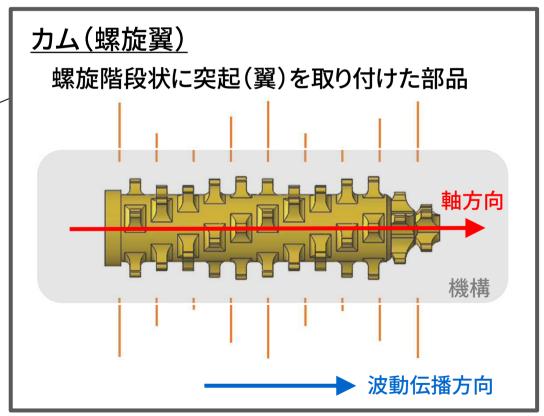
螺旋翼を用いた軸方向マルチ面波動



新技術の概要

螺旋翼を用いた軸方向マルチ面波動



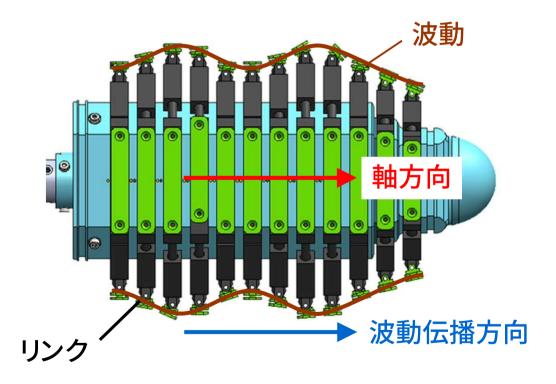

新技術による波動伝播メカニズム

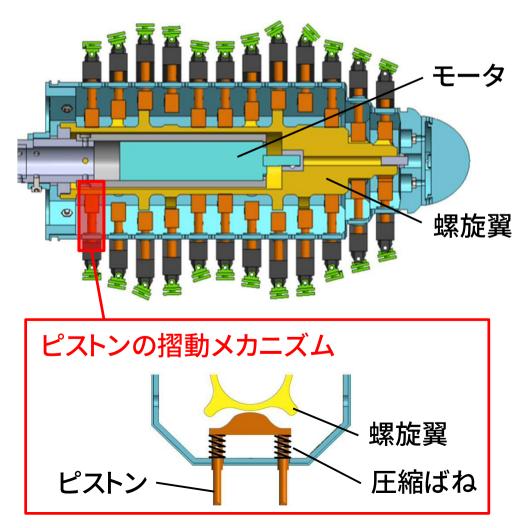
マルチ面波動を生成する機械メカニズム

カムでモータ回転をピストンの摺動に変換

➡ 軸方向・機構全周に波動を伝播

高強度な単一螺旋翼で軸方向にマルチ面波動を生成可能

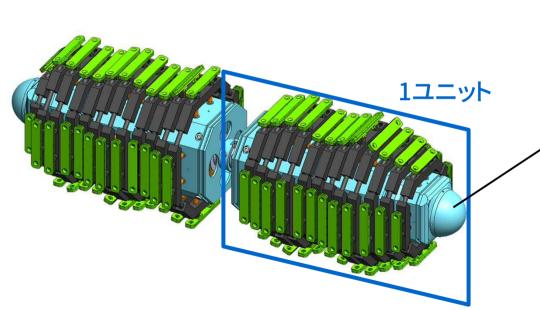



波動伝播機構の設計・開発(1)

波動伝播ユニットの構造

- ▶ ピストンとリンクを受動回転関節で接続
- 1ユニット内に単一の螺旋翼
- モータを螺旋階段翼に内蔵

(断面図)



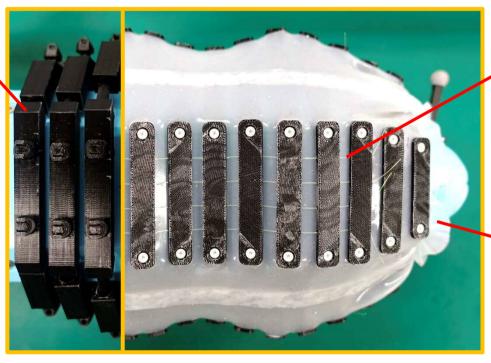
波動伝播機構の設計・開発(2)

前後2ユニット化

螺旋翼の螺旋巻き付き方向

波動の伝播方向を同一方向にするため、 各ユニット内の螺旋翼は逆巻きに設計

2ユニットを前後対称に接続して 各ユニットのモータを逆回転することで、 モータの反トルクを相殺


波動伝播機構の設計・開発(3)

環状ガイド機構/非伸縮性糸/シリコンカバー

環状ガイド機構

ピストンの摺動をガイド

非伸縮性糸

リンク回転を補助

シリコンカバー

機構全体を被覆 リンク回転を補助

(写真左側はシリコンを捲った状態)

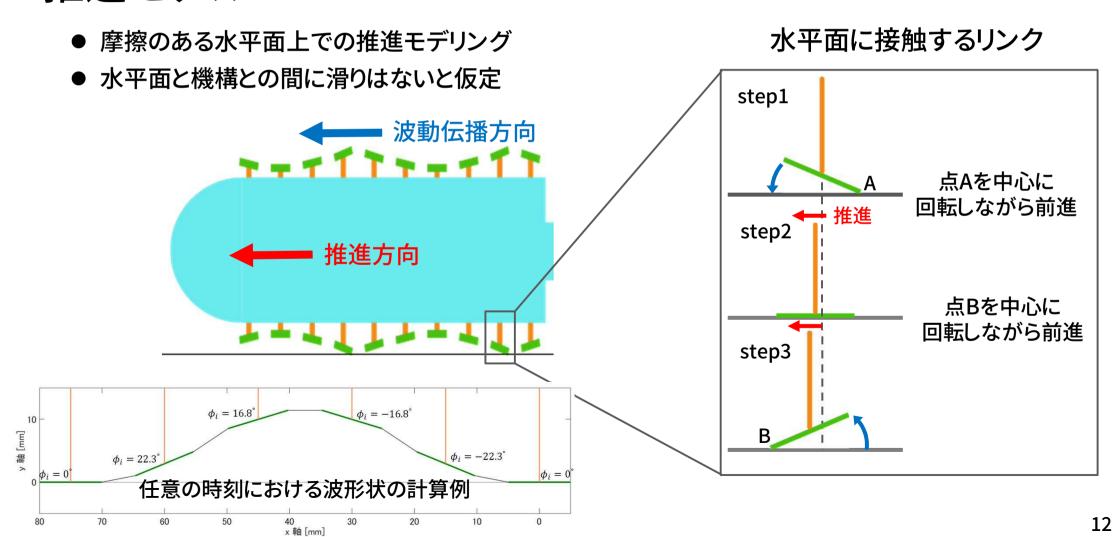
波動伝播機構の設計・開発(4)

試作機

全体質量:2.8 kg

波動周期T= 0.75秒 (1.3Hz)

最大直径 155mm



波動伝播による推進原理

推進モデル

本技術の実証

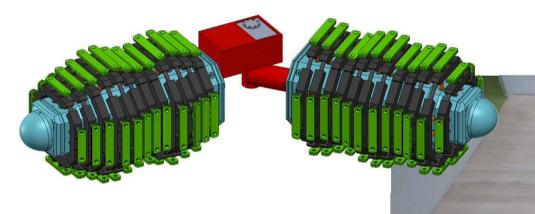
平面での走行性能評価

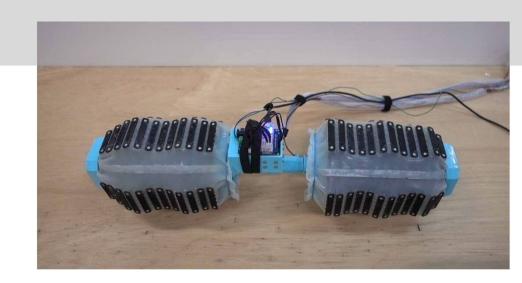
結果①:水平面上を走行できることを実証

1周期あたりの 平均推進距離は 5.1 mm

結果②:リンクの回転によって推進が実現できていることを検証

推進モデルとの実験値は 概ね整合性があることを確認



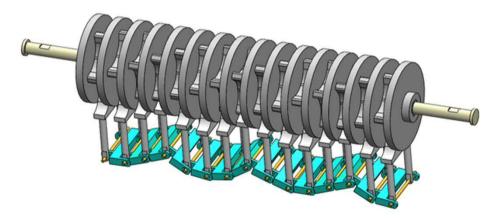

本技術の応用(1)

ステアリング機構の追加

ステアリング用モータ

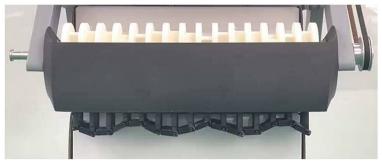
蛇行推進を実証

32倍速

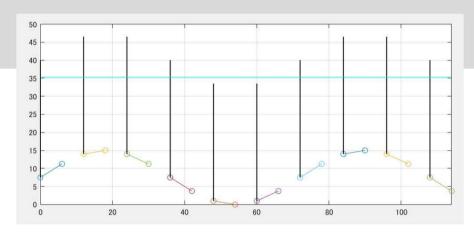


本技術の応用(2)

車両型への応用 (+シリアルリンクへの拡張)


シリアルリンク機構による波形状の保持強化

車両型に拡張可能


本技術の応用(3)

配管内移動への応用 (+シリアルリンクへの拡張) (+6面波動に拡張)

配管内移動も可能

従来技術との比較表

	SAW [1]	軸方向波動ホイール機構 [2]	多重螺旋回転装置 ^[3]	粒状体搬送機構 [4]	本技術
	real time ©Ben Gurion Univ.	©東北大学 C東北大学	©東北大学	©九州工業大学	©九州工業大学
要点	1) 蔓巻状の回転部品 2) 1) を覆う多リンク部品 → 1平面波動	1) 蔓巻状の回転部品(×6) 2)1)を覆う多リンク部品 3)1)を連動する歯車機構 ➡6平面波動	1) 蔓巻状の回転部品(×6) 2)1)を覆うメッシュチューブ 3)1)を連動する歯車機構 ➡6円形面波動	1) 蔓巻状の回転部品(×2) 2) 1) を覆う多リンク部品 3) 1) を連動する歯車機構 → 2平面波動	1)螺旋回転翼(×1) 2)1)で押出す多リンク部品 3)2)を覆うシリコンカバー ➡ 4平面波動
特徴	・密閉構造・リンク構造・単一面波動	・密閉構造・リンク構造・マルチ面波動	・密閉構造・リンク構造・マルチ面波動・蔓巻螺旋の高強度	・密閉構造・リンク構造・マルチ面波動	・密閉構造 (・リンク構造)・マルチ面波動・内部駆動源・高強度な単一螺旋翼
技術的難点	・1面波動 ・外部駆動源 ・蔓巻螺旋の低強度	・外部歯車 ・外部駆動源 ・蔓巻螺旋の低強度	・外部歯車 ・外部駆動源 ・非平面波動	・波動外部の歯車機構・波動外部に駆動源・蔓巻部品の低強度	

- [1] Zarrouk et al.: Bioinspiration & Biomimetics, 2016.
- [3] Watanabe et al.: IEEE Robotics and Automation Letters, 2020.
- [2] 西村 他: ロボティクス・メカトロニクス講演会, 2018.
- [4] 赤星, 永岡: ロボティクス・メカトロニクス講演会, 2020.

従来技術に対する有用性・優位性

搬送装置としての観点 ベルトコンベヤ方式に対する有用性・優位性

搬送部の密閉

- ベルトの目詰まりを回避
- 細かな粒状物体への配慮不要

全方位での同方向への搬送面生成

- 1ユニットで複数の搬送ライン可
- 小型・軽量・省スペース化

非露出摺動部の耐摩耗性

● ベルトの摩耗や擦り切れを回避

移動機構としての観点 クローラ方式に対する有用性・優位性

移動機構の密閉

● ベルトの目詰まりや脱輪を回避

全方位での移動推進力生成

● 配管内などの三次元移動に応用可

非露出摺動部による耐摩耗性

● クローラベルトの擦り切れを回避

駆動源(モータ)を移動機構に内蔵

● 小型・軽量・省スペース化

想定される用途のまとめ

- 本技術の密閉可能でコンパクトなマルチ面波動生 成を生かすことで、農業、土工土木建築、除雪、 災害救助などの現場で用いる搬送装置や車両用移 動機構に適用することができる
- 粉塵・ダスト汚染を伴う劣悪環境での用途にも有 用性が期待できる
- また、機械的なマルチ面波動に着目すると、ロ <u>ボットハンド(物体ハンドリ</u>ング)や掘削の用途 への展開も可能と思われる

実用化に向けた課題

- 現在,本技術を多様な用途に展開すべく, 屋外フィールド用移動体、砂地掘削、粒状 体搬送への応用研究を推進中である
- 今後,砂などの自然地形での性能に関して 実験によって明らかにしていく
- 実用化に向けて、繰り返し動作や過負荷状 態に対する機構の信頼性を向上できるよう な機構的工夫に取り組む必要がある

企業の皆様方への期待

- 本技術の応用・用途の掘り起こし
- 掘削・搬送の技術および潜在的な需要を有す る,企業との共同研究を希望
- 劣悪環境を想定した移動・搬送をご検討の企 業には,本技術の導入が有効

本技術に関する知的財産権

• 発明の名称:波動伝播機構

出願番号 :特願2021-200712

• 出願人 :国立大学法人九州工業大学

:永岡健司、赤星美彩子、舍川拓馬 • 発明者

お問い合わせ先

国立大学法人 九州工業大学 先端研究•社会連携本部 産学イノベーションセンター 荻原 康幸

093 - 884 - 3449TEL 093 - 884 - 3531FAX e-mail chizai@jimu.kyutech.ac.jp