

非水系電解質を用いた プロトンニ次電池の開発

信州大学 工学部 物質化学科 准教授 清水 雅裕

2024年8月1日

プロトン(ヒドロニウムイオン)活用

	Abundance in Earth's crust / %	Cost	lonic radius / pm	Potential / V vs SHE	Molar conductivity / 10 ⁻⁴ S m² mol ⁻¹	Diffusion coefficient / 10 ⁻⁵ cm ² s ⁻¹
Li	0.002	High	76	-3.045	38.69	1.03
Na	2.3	Low	102	-2.710	50.11	1.33
K	2.1	Low	138	-2.930	73.48	1.96
Mg	2.3	Low	89	-2.370	106.12	0.71
H ₃ O⁺	-	Low	100	0 (H ⁺ /H ₂)	349.65	9.31

Grötthuss機構に基づく高速なH⁺伝導により, 電気二重層キャパシタに匹敵する高出力とそれを凌ぐ充放電容量が見込める.

正・負極活物質の候補

Active Material	Composition after full Protonation $(H_x M_y O_z)$	Reversible capacity / mA h g ⁻¹	Reaction potential / V vs. SHE	Electrolyte	Ref.
MoO ₃	$H_{0.88}MoO_3$	152 _(5C)	-0.15~+0.3	1 M H ₂ SO ₄	1,2,3,4
VO ₂	HVO ₂ (H ⁺ /Zn ²⁺)	272	-0.6~+0.54	1 M ZnSO ₄	5,6
$WO_{3}(\cdot nH_{2}O)$	(H ₃ O ⁺) _{0.17} -WO ₃	90	-0.3~+0.3	0.1 M H ₂ SO ₄	7,8,9
MnO ₂	$H_{1.57}Mn_2O_4$	281	+0.3~+1.0	2 M ZnSO ₄ /0.1 M MnSO ₄	10
ZnFe-PBA	I	78	+0.8~+1.3	1 M H ₃ PO ₄ /MeCN	11
PTCDA	(H ₃ O ⁺) ₂ -PTCDA	85	-0.35~-0.1	1 M H ₂ SO ₄	12
A-TiO ₂	$H_{0.45}$ TiO ₂	150	-1.0~-0.76	1 M acetate buffer	13,14
H ₂ Ti ₃ O ₇	(H⁺) _{0.8} H ₂ Ti ₃ O ₇	80	-0.8~-0.4	1 M H ₂ SO ₄	15
R-TiO ₂	H _{0.3} TiO ₂	100	-0.9~-0.42	Buffer solution	16 Our study
TiNb ₂ O ₇	H _{0.8} TiNb ₂ O ₇	80	-1.7~-1.25	Protic ionic liquids	17 Our study

1) C. Yan et al., Angew.Chem. Int.Ed., 57 (2018) 11569.; 2) Guo et al., Cell Rep., 1 (2020) 100225.; 3) A. Yamada et al., Adv. Mater., 34 (2022) 2203335.; 4) X. Ji et al., Angew.Chem. Int.Ed., 10 (2020) 2000968.; 5) M. Wagemaker et al., Adv. Energy Mater., 9 (2019) 1900237.; 6) V. Balland et al., Adv. Energy Mater., 10 (2020) 2000332.; 7) X. Ji et al., J. Am. Chem. Soc. 140 (2018) 11556.; 8) V. Augustyn et al., Chem. Mater., 29 (2017) 3928.; 9) V. Augustyn et al., ACS Nano, 12 (2018) 6032.; 10) S. Dai et al., ACS Appl. Energy Mater., 3 (2020) 319.; 11) X. Ji et al., Angew.Chem. Int.Ed., 59 (2020) 22007.; 12) X. Ji et al., Angew.Chem. Int.Ed., 56 (2017) 2909.; 13) V. Balland et al., J. Phys. Chem. C, 121 (2017) 10325.; 14) V. Balland et al., Chem. Mater., 33 (2021) 3436.; 15) V. Augustyn et al., J. Mater. Chem. A, 8 (2020) 412.; 16,17) J. Phys. Chem. C, 127 (2023) 17677.

ルチル型TiO2のプロトンニ次電池特性

これまでに伝導帯準位と関連する結晶構造に着目 し, Anataseを含む, Rutile, Brookite型TiO₂のプロ トン吸蔵-放出特性について検討してきた.

水熱合成により得られた種々TiO₂を作り分け、それらを用いた合剤電極により電極特性を評価した.

結晶構造に関わらず、サブミクロン以下の粒 子では、プロトン吸蔵 – 放出活性が得られた. RutileTiO₂がBrookite および Anataseよりも 高い充放電容量を示すことが明らかとなった。

ルチル型TiO₂の合成

比表面積: 69 m² g⁻¹ 比表面積: 80 m² g⁻¹ 比表面積: 27 m² g⁻¹

いずれも不純物のない, 単相として Rutile, Anatase, Brookite TiO₂を得た. Rutile, Anatase:単結晶・紡錘状TiO₂. いずれも約20 nm×50 nm Brookite:丸みを帯びた楕円状粒子.約60 nm×70 nm

不可逆的なH₂発生による可逆率の低下

1 M AcOH :反応電位は負側であったものの, H₂SO₄よりも高い可逆性を示した.

非電気化学的に脱離するプロトン

1 M AcOH : Rutile TiO₂へのH⁺挿入とともに、不可逆的なH₂発生が進行した. -0.7 V vs. Ag/AgCl からH₂発生にともなう電極界面でのpHの局所的上昇を確認した. $[H_3O(H_2O)_n]^+ + 1/2e^- \rightarrow 1/2H_2 + (n+1)H_2O$ 広い領域でpHの上昇が見られた.

従来技術:緩衝液(電解液)

従来技術:緩衝液(電解液)

TiO2のプロトンニ次電池負極特性

充電10 mA h g⁻¹ 到達電位:-0.80 V (Rutile) > -0.85 V (Anatase) > -0.96 V (Brookite) Rutile型TiO₂: 100 mA h g⁻¹の可逆(H⁺脱離)容量が得られた. H₂発生が低減した.

H₂発生による電極の機械的耐久性低下

Rutile型TiO₂は Anatase, Brookite よりも高い電極性能を示した(87 mA h g⁻¹ / 50th). しかしながら,競争的に生じるH₂ガスによって合剤電極の機械的耐久性が低下(容量劣化).

新技術:反応電位のアップシフトに向けて

非晶質TiO_xの合成

Ref.) M. Ota et al., Chem. Lett., 45 (2016) 1285.

■ Ti[OCH(CH₃)₂]₄ (TTIP) 10 mL を 50 mLの THF と混合した.

Amorphous TiO_x (THF)

Ti[OCH(CH₃)₂]₄ (TTIP) 10 mL を 50 mLの EtOH と混合した.

Amorphous TiO_x (EtOH)

上記溶液を攪拌しながら, 3 mLの脱イオン水 を滴下し, 攪拌を30 min継続した.

沈殿物を遠心分離後,真空下 200 °Cにおいて、4 hの乾燥処理を行い、吸着した溶媒
 (EtOH)を除去した(THFは乾燥処理なし).

本研究

材料的側面から反応電位を正側にシフトさせる試みとして、TiO2の非晶質化について検討し、結晶性がH⁺挿入一脱離の電気化学的挙動におよぼす効果を調査した.

非晶質TiO_x合成時の様子:TiO_x(EtOH)

脱イオン水の滴下量により、加水分解の速度を 調節し、TiO_xの粒子サイズを制御した。

非晶質TiO_x

合成時の溶媒(THF, EtOH)に関わらず,加水分解により得られた TiO_x に, 回折ピークが認められず, 非晶質な状態であることが分かる. 200 ℃までに TiO_x試料粉末に吸着する溶媒が揮発した. EtOH を用いて合成した TiO_xサンプルは 200 ℃ 加熱したものを活物質として使用した.

15

非晶質TiO_x

いずれの粒子も不定形であり、凝集した二次粒子として存在している. TiO_x (THF) : 粒子表面に多数の凹凸があり、高い比表面積を有する. 5 nm × 10 nm TiO_x (EtOH): 球状粒子も見られるが、粒子間が連なった形態が多い. 30 nm × 70 nm

非晶質 $TiO_x \times 汎用酸(電解液)$

非晶質TiO_x×緩衝液(電解液)

還元耐性: p-buffer (pH 6.6) > c-buffer (pH 4.2)

c-buffer: citric acid/trisodium citrate p-buffer: 1 M H_3PO_4/Na_3PO_4

充電(H⁺挿入)時の電極-電解質界面の局所的なpH変化および活物質の溶解を 抑制することを目的として、クエン酸・リン酸緩衝液を電解液として使用した. p-buffer (pH 6.6):他の水系電解液と比較して高い可逆性を示した.

非晶質 $TiO_x \times 緩衝液(電解液)$

還元耐性: p-buffer (pH 6.6) > c-buffer (pH 4.2) ^{p-}

c-buffer: citric acid/trisodium citrate p-buffer: 1 M H_3PO_4/Na_3PO_4

充電(H⁺挿入)時の電極-電解質界面の局所的なpH変化および活物質の溶解を 抑制することを目的として、クエン酸・リン酸緩衝液を電解液として使用した. p-buffer (pH 6.6):他の水系電解液と比較して高い可逆性を示した.

可逆率はわずかに改善されたものの

充電容量が 335 mA h g⁻¹ に到達するまで電流を流し、 H_2 発生挙動をモニタリングした. Rutile:充電初期から電極上に気泡が見られ、 H^+ 挿入反応と競争的に H_2 発生が進行. Amorphous: H^+ 挿入反応がより貴側で進行することで、 H_2 発生が低減した(C.E.改善).

課題:水素発生+活物質の溶出

Amorphous TiO_x は Rutile TiO₂ よりも高い初回可逆容量を示した(160 mA h g⁻¹). Amorphous TiO_x:50サイクル後に至るまでに70 mA h g⁻¹以下まで容量が低下した.

従来技術とその問題点

非晶質TiOxを活物質として使用した点は, 新技術であるが, 汎用的な酸性水溶液(電解液)では, ①活物質(TiOx)の電解液への溶出に加え, ②不可逆的なH₂発生 を充分に抑制できず, 充放電可逆率が低いままであった.

不可逆的なH₂発生の低減による電極性能改善. 電極一電解質界面における局所pH変化の抑制. H^+ 伝導媒体としての NH_4^+ の活用など.

プロトン性イオン液体の活用

A. J. Walker et al., Phys. Chem. Chem. Phys., 19 (2017) 28133. Y. Umebayashi et al., J. Phys. Chem. B, 124 (2020) 11157.

対アニオンによる水和構造チューニング

アニオンの親水性・疎水性に着目し、活物質の 電解液への溶出を抑制することでH⁺挿入に挑戦.

[H(Anion)_x]^{1-x}のキャリアイオンとしての検討. カチオン・アニオン構造修飾による溶存状態の制御.

新技術:プロトン性イオン液体の活用

Grötthuss機構に基づく高速なH⁺伝導により、高い 急速充放電性能が期待できるが、電気化学的安 定性が低く、卑側で反応する材料に適用できない.

(HTFSA)_{0.4}(DBU)_{0.6}:を適用することで,可逆率が96%にまで改善された. (DBU) (HTFSA) 50サイクルまで容量衰退なし;カットオフ電位の変更により,可逆率の改善が期待できる.

TiNb₂O₇負極+プロトン性イオン液体

1 M Buffer solution (citric acid / trisodium citrate): 充電時において、H₂発生が支配的であり、初回可逆容量は40 mA h g⁻¹を下回った. (HTFSA)_{0.4}(DBU)_{0.6}と比較すると、初回放電容量が同程度にも関わらず、 反応可逆率は緩衝液(水系電解質)よりも大きく改善されていることが分かる.

新技術:イオン液体の活用

Potential / V vs. Ag/Ag⁺ in 100 mM AgOTf / EMI-TFSA

いずれの系においても、HTFSAを溶解することで還元側安定性が低下したが、 全体として、水系電解液(1.23 V)よりも2 V 以上の広い電位窓を示した.

電位窓(電気化学的安定性): Pyr_{1,3}-TFSA / −0.5 ~ 2.0 V, EMI-TFSA / −0.4 ~ 1.7 V 還元側では, Pyr_{1,3}⁺, EMI⁺ よりも [H(TFSA)_x]^{1-x} の分解が優先的に生じる.

HTFSAの添加に関わらず,酸化側では TFSA⁻の分解が電位窓を決定する.

R-TiO₂負極+イオン液体

反応可逆率に改善の余地はあるものの,水系電解液(HTFSA/H₂O)と比較して, 副反応(H₂発生)が低減し,150 mA h g⁻¹を超える高い可逆量が得られた.

自己放電挙動の改善

水系電解質とは異なり、イオン液体電解液では充電停止後に電位変化が小さかった. 水系電解質では、TiO₂から非電気化学的に H⁺ が OH⁻ や H₂O によって抜き取られた. イオン液体中では、TiO₂ 表面に存在するイオン液体のカチオン(Pyr_{1,3}⁺, EMI⁺)によって、 H⁺ の脱離が抑制された結果として、自己放電が小さかったものと推察される.

新技術の特徴・従来技術との比較

従来技術の問題点である,不可逆的なH₂発 生による可逆率および可逆容量の低下を下 記アプローチから改善することができた ①**非晶質化による反応電位の高電位シフト** ②プロトン性イオン液体の活用

③イオン液体の活用

本技術の適用により,水系電解質では動作 しなかった活物質の性質を見極め, 1.23 V 以上の動作電圧を達成することが見込める.

▶プロトン二次電池用電解液・活物質 水系電解質では不可逆的な水素発生が支配 的であった活物質系においても、その動作 が可能となる.非電気化学的なプロトン脱 離を低減し、充放電容量の増大が見込める.

▶エレクトロクロミズムへの展開 電気による色調を変化させるデバイス

実用化に向けた課題

▶材料探索・選択肢の拡張 ▶充放電容量のさらなる増大 ▶動作電圧の向上 ▶イオン伝導性の確保

▶セル部材を腐食しないような電解液
▶ニッケル水素電池以上のエネルギー密度

▶粉末材料(半導体・セラミック)に強い 企業と協働したい.試してみたい材料は 幾つかあるものの,形状・形態制御が困 難で取り掛かれない状態.

▶プロトンや水素に関する分析技術を有す る企業との共同研究を希望.

▶エレクトロクロミズムに関するデバイス を扱う企業との共同研究を希望.

本技術に関する知的財産権

- 発明の名称
- 出願番号
- 出願人
- 発明者

- :二次電池
- : 特願2023-179660
- : 信州大学
- :清水雅裕、西田大亮

お問い合わせ先

T E L 0268 – 25 – 5181 F A X 0268 – 25 – 5188 e-mail info@shinshu-tlo.co.jp