

超広帯域NMRプローブ: 磁性体をはじめ様々な核種の測定に最適

日本原子力研究開発機構 先端基礎研究センター スピン-エネルギー科学研究Gr.

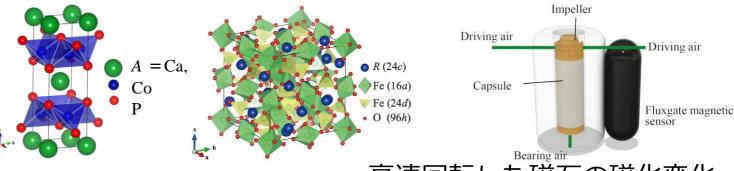
研究員 今井 正樹

2025年6月24日

1

自己紹介

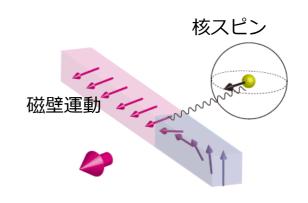
専門:磁性材料合成と物性測定


2016 京都大学大学院 化学専攻 博士 (理学) 2016 現所属 特定課題推進員→研究員

層状化合物

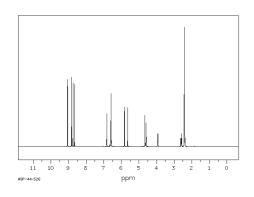
フェライト磁石 磁性測定

高速回転した磁石の磁化変化


混合

焼結, 単結晶育成

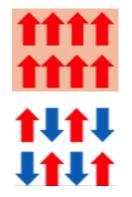
フェライト磁石 NMR研究


自分の手で試料を作成し、オリジナルな装置で測定

本発表のサマリー

磁性体等の固体NMR測定で使用する 広帯域のNMRプローブの紹介

「NMR」で思い浮かぶ測定


化学シフト ⇒分子構造の特定

SDBS: https://sdbs.db.aist.go.jp/ , National Institute of Advanced Industrial Science and Technology, 2025.05.01

本日の対象:磁性材料研究

スペクトルの分裂、シフト ⇒磁気構造, 磁気モーメント

緩和測定 ⇒構造や磁気の揺らぎ

課題

磁石(磁性体)のNMR測定では試料自身の磁性のため 周波数の変動範囲が広く周波数に合わせたプローブが何本も必要

- 1本で研究に必要な帯域をほとんどカバー
- 高周波領域での測定感度向上

本発表のサマリー

磁性体等の固体NMR測定で使用する 広帯域のNMRプローブの紹介

磁性体NMR測定の参入障壁を下げる。

量子コンピュータ

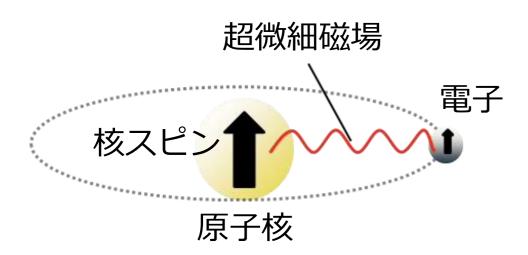


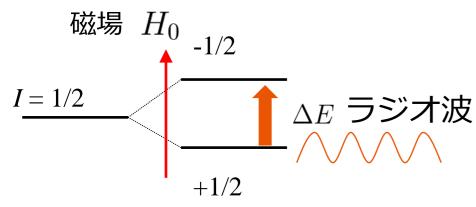
本発表のサマリー

磁性体等の固体NMR測定で使用する 広帯域のNMRプローブの紹介

解決策 らせん型可変1/4λ共振器

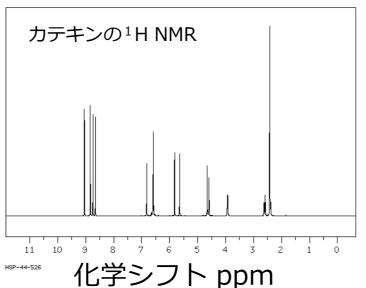
手製プローブを作成




求めている連携

- プローブの完成品を作成したい
- 磁性材料のNMR評価に興味がある企業との共同研究
 NMR測定を利用した磁性材料や磁気デバイスの評価や開発

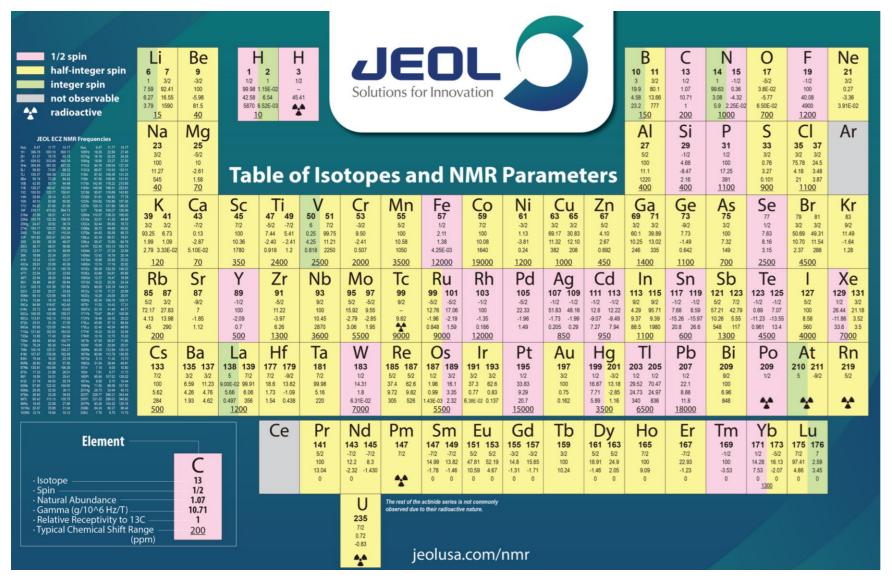
核磁気共鳴(NMR)の仕組み



エネルギー差 $\Delta E = \gamma \hbar (H_0 + H_{\rm int})$

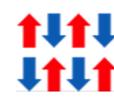
超微細磁場を通じて周りの環境を測定

代表的な用途: 有機化合物の同定


化学シフト: 分子構造の特定 主な核種:¹H,¹³C,¹⁵N,³¹P

SDBS: https://sdbs.db.aist.go.jp/ , National Institute of Advanced Industrial Science and Technology, 2025.05.01

核磁気共鳴の対象核は豊富


ほとんどの元素に NMR可能な核が存在

無機化合物も測定可能

磁性材料研究

- 磁気構造
- 局所的な磁化の大きさ
- 磁気揺らぎ

出展元 JEOL USA, INC.

https://www.jeolusa.com/RESOURCES/Posters

NMR測定の優れているところ

手法	試料	特徴	備考
NMR 測定	バルク(少量)粉末でもOK、 薄膜もOK	非破壊、低励起、実験室レベルで測定可能	小型、自前で導入可能(^^)!
中性子回折	バルク試料 (ある程度の量が必要)	結晶の磁気構造の決定が得意	加速器等大型施設の利用(;∀;) マシンタイムの制約
μSR 測定	バルク試料 (ある程度の量が必要)	わずかな磁気モーメントにも敏感	加速器等大型施設の利用(;∀;) マシンタイムの制約

次世代技術を支える材料に非常に 有用な測定手法

対象マテリス	アル	NMRの用途	将来
トポロジカル反強	磁性体	磁性の高精度検出	スピンデバイス, 次世代磁気メモリ
低次元材料(グラ	フェン等)	局所構造の把握	高感度センシング
強相関系材	才料	ゆらぎ計測	スピントロニクス素子、量子コンピュータ

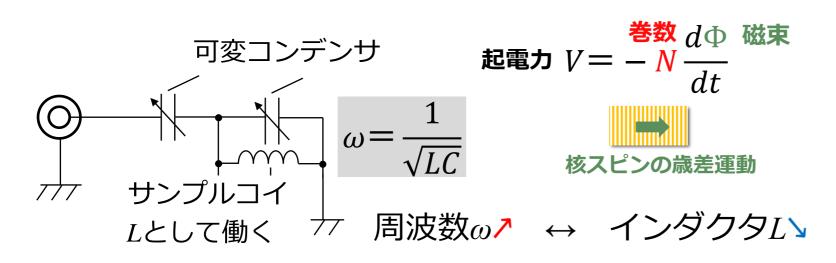
磁性体NMR研究の装置

温度 2 K - 300 K

測定手順

プローブ挿入(リークチェック) 2h~ 部品交換 冷却 半日~ プローブ取出し 共振回路の調整 室温に戻す 2~3h 測定 53 スペクトルが調整可能な周波数の範囲外

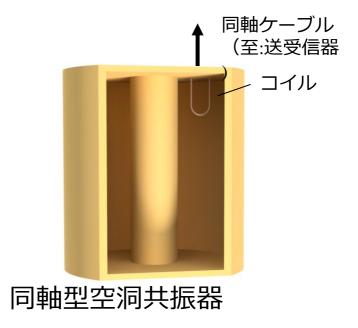
リークチェックや冷却のやり直し


従来技術とその問題点

巻数N√

感度↘

磁性体のNMRで用いられる一般的な共振回路

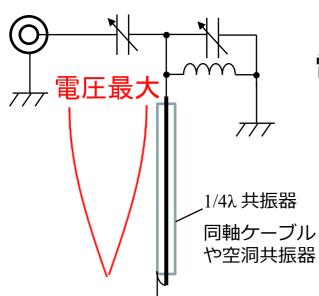

LC共振回路

一般的に使用される

低周<300MHz (C) 高周波>300MHz ×

空洞共振器

低周波× 高周波〇



従来技術とその問題点

高周波NMRで用いられる回路

1/4λ共振回路

λ: 波長

電路の長さが1/4λの時

コイル端で定在波の

電圧振幅が最大

共振器のショート位置可変

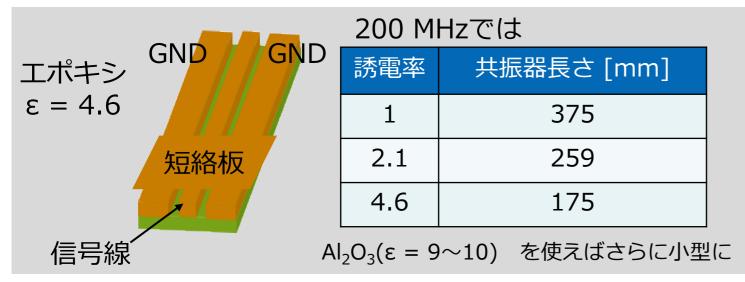
→導波路長を可変

低周波数では共振器が大型化

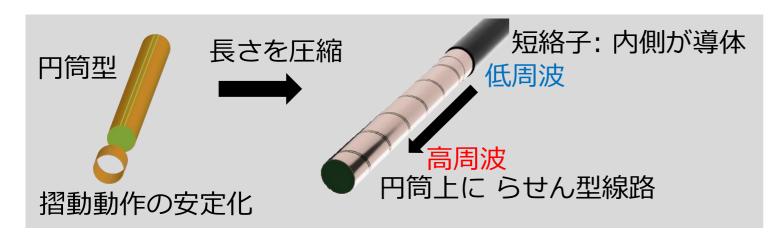
空洞 ε =1

テフロンが充填されていて ショート位置が変えられない

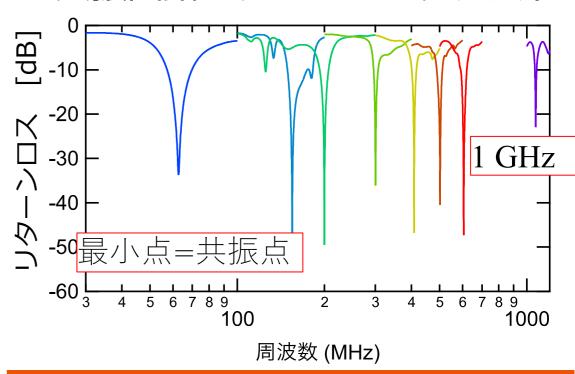
200 MHzでは


誘電率	共振器長さ [mm]
1	375
2.1	259

低周波△高周波○



新技術の特徴


▶ 1/4λ 共振器→コプレーナー線路を採用

▶ コプレーナー線路をらせん型に

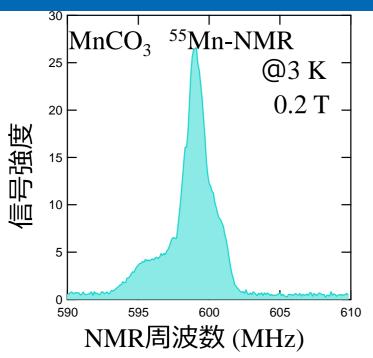
共振回路のチューニングテスト

数十MHz-1GHzまで 共振周波数を任意に合わせられる

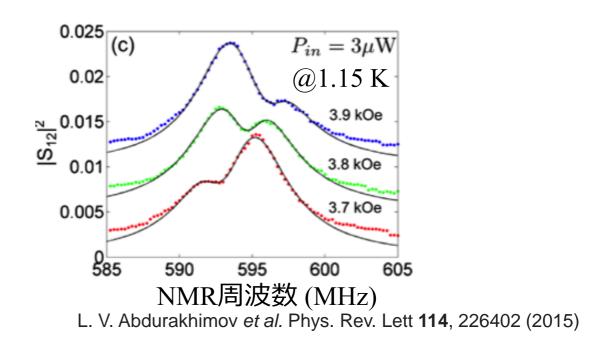
低周波〇 高周波〇

試作品と測定結果

約1m



- ・短絡ブリッジ(黒円筒)が滑りネジにより上下に運動し、導波路長の調整が可能
- ・上部のつまみを回して**冷却状態(3 K)**でも共振周波数を広帯域にわたり調節可能
- 磁性マンガン化合物の55Mnの信号(300~650MHz)を実際に測定

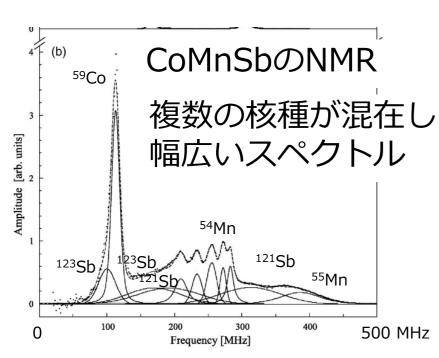


試作品と測定結果

先行研究のスペクトル

- ・短絡ブリッジ(黒円筒)が滑りネジにより上下に運動し、導波路長の調整が可能
- ・上部のつまみを回して冷却状態(3 K)でも共振周波数を広帯域にわたり調節可能
- 磁性マンガン化合物の55Mnの信号(300~650MHz)を実際に測定

従来技術との比較


手法	低周波 300HZ以下	高周波 300MHz以上	コイルの巻き数 感度	RF磁場の向き
LC回路		×	低周波○ 高周波× L→小=巻数→少	可変(コイルの向き調整)
空洞共振器	×		Q値〇	固定(共振器の設計)
本技術 1/4λ共振器回路 +らせん型共振器				可変(コイルの向き調整)

1つのプローブで磁性体NMRに必要な周波数に対応

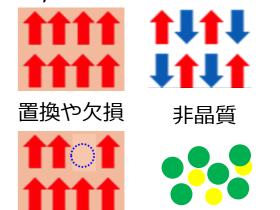
想定される用途

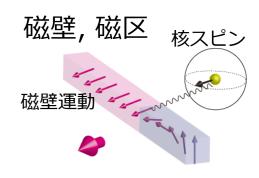
磁性材料のNMR

- V. Ksenofontov et al., Phys. Rev. B 74, 134426 (2006)
- 結晶構造(磁性元素の配列)
- 磁気モーメントの大きさ

磁性材料の評価

- 軟磁性体
- 永久磁石
- 磁気デバイス用試料


磁性製品の性能評価,品質改良の指針


希土類系

核スピンを持つ希土類核

¹⁴¹Pr, ¹⁴³Nd, ¹⁴⁵Nd, ¹⁵¹Eu, ¹⁵³Eu, ¹⁵⁵Gd, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶¹Dy, ¹⁶³Dy, ¹⁶⁵Ho, ¹⁶⁷Er, ¹⁶⁹Tm, ¹⁷¹Yb, ¹⁷³Yb

磁気構造, モーメントの大きさ

磁気モーメントが大きく信号が高周波に

磁性材料や磁気デバイスの評価にNMR測定を

企業への期待

● 手製でらせん型可変共振器を用いたプローブを 試作したが、耐久性やノイズ低減、周波数自動 調整機能も有した完成品を目指したい

● 磁性体試料のNMR評価に興味をもっている 企業との共同研究の可能性

本技術に関する知的財産権

発明の名称 核磁気共鳴プローブ、核磁気共鳴測定装置、

及び、核磁気共鳴測定方法

出願番号 特願2021-171353

出願人 国立研究開発法人日本原子力研究開発機構

発明者 今井 正樹

お問い合わせ先

国立研究開発法人日本原子力研究開発機構 研究開発推進部

e-mail seika.riyou@jaea.go.jp