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本技術の分野について

主に放射線測定に関連する分野に適応

原子力分野 環境モニタリング 放射線施設

放射性同位元素:  Radio Isotopes (RI) と呼ぶ場合があります
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適切な測定器を決定

床面の放射性物質 (RI) による汚染を評価したい場合

従来技術とその問題点 ～ 放射線測定とは？ ～

放射線管理区域内 実験室

実際に放射線測定を行うには 高度な専門性  と 経験 が必要

測定線種・測定量の選択

適切な使用方法の把握も必要

α線 β線 γ線 中性子
線

Gy Sv Bq

Gy/h Sv/h Bq/cm2

Bq/cm3

cps

cpm

-

ポイント！

具体的に何をどうすれば？

評価点
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従来技術とその問題点 測定器の種類が多すぎる

α線

β線

γ線

中性子
線

-

低エネルギー核種 (125I) 用

高線量環境用

空気中放射能濃度測定
(作業環境測定用)

個人被ばく線量計
(RI作業時に装着)

放射性同位元素等の規制に関する法律 規則第20条第３項第４号

放射線測定器を保有するほど管理が大変

放射線測定器は 点検及び校正 を一年ごとに適切に組み合わせて行うこと。

ポイント！

一方で…
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新技術の特徴・従来技術との比較

α線・β-線・γ線が １つの検出器 で測定できる！
複数の放射線測定器の機能を統合できる（管理すべき測定器が減る）
測定環境による測定器の使い分けが大幅に減る

α線・β-線・γ線
が測定できる！

ポイント！

β-線 領域

β-線 + γ線 領域

γ線 領域 α線 領域

新技術による238U(ウラン)放射線の弁別結果
(ヒートマップによる可視化)

β-線 γ線 α線 β＋γ線

弁別能 100% 100% 100% 86.44%

正解率 99.97% 99.76% 100% 100%

しかも高精度！

後ほど解説いたします
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想定される用途 その１

環境モニタリング

(由来が分からない放射線だけど)
空間線量率は2 µSv/hだ！

従来技術

γ線として反応していて
そのエネルギーが660 keV付近だから
137Cs (セシウム) 由来の放射線で
その空間線量率は2 µSv/hだ！

新技術

測定器に核種データをインストールすることで
測定値から「推定核種」の自動表示も可能！

測定に不慣れであっても
直感的で分かりやすい！
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床面の汚染探査

RI汚染箇所

想定される用途 その２

放射線管理区域内 実験室

自走ロボット 概念図

新型検出器

メカナムホイール
(前後左右への移動が可能)

バッテリーコンパクトPC

AD変換器 (デジタイザ)

深度センシングカメラ
(物体間の距離を把握)

現状の課題
床面のRI汚染確認は法令に基づき月１回の頻度で確認している (部屋面積の僅か0.1%程度のみ)

新技術による課題解決
測定結果をヒートマップにて可視化し、床面の汚染状況が直感的に分かる
設定値以上のRI汚染が見つかった場合に、管理者へメールやLINE等で伝える
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90Sr (ストロンチウム)
由来β-線

137Cs (セシウム)
由来γ線

放射線検出の原理 （シンチレータについて）

シンチレータに放射線が当たると蛍光が発生する
その蛍光を光電子増倍管で受光すると電気信号が発生する
シンチレータには放射線の種類によって感度が異なる

Plastic シンチレータ
β-線用

無機シンチレータ (GSOなど)
γ線用

ポイント！
光ガイド

ZnSシンチレータ

10×10 mm

α線

蛍光

光電子増倍管
(蛍光 → 電圧 に変換)

→
 電

圧
(V

)

100 ns

オシロスコープ

→ 時間 (ns) 放射線の種類によって適切なシンチレータがある
238U(ウラン) 由来α線



9

多層シンチレータ 概念図

放射線検出の原理 （シンチレータを重ねた場合）

ZnS Plastic GSO

光ガイド

UV

～～

ZnS(Ag)

Plastic

GSO

シンチレータ

オシロスコープ

シンチレータ群に紫外線を照射した様子

シンチレータを重ねると光電子増倍管に多様な波形が入射する
これらの波形を区別 (弁別) する仕組みは世界的に確立されていなかった

ポイント！

光電子増倍管

本技術で解決した重要ポイント

オシロスコープで観測される
実際の波形信号

― 238U - α
― 238U - β
― 137Cs - γ

様々な波形がランダムに観測される！
(波形の特徴から放射線種の特定が必要)

課題
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238U(ウラン)からのα・β-線・γ線 データ取得

オシロスコープ

238U線源

新検出器

20,000
イベント

信号処理

C++

238Uから得られたα・β-・γ線の信号

α β- γ

線種毎に 正解 を付与

目視弁別 小計
β- 線 13,447
γ 線 1,633
α 線 4,829

β- + γ 線 54
除外データ 37

合計: 20,000
238U線源を用いてα・β-・γ線の波形を取得
弁別精度を評価するため、各波形に正解を付与した

ポイント！

（詳細は次頁にて）
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信号の弁別 PQD (Peak-to-charge discrimination) 法※

※ 特許第6675127号 LaBr3シンチレーション検出器及び特定イベント排除方法

α線由来信号のVp/Qα線
蛍光

γ線由来信号のVp/Qβ-線由来信号のVp/Q

無機シンチレータ

GSOシンチレータ

高 エネルギーβ-線

低 エネルギーβ-線

どんなβ-線でもVp/Q値は同じ

積分電荷量
Qtotal

Vp / Q

電圧ピーク値  Vp

シンチレータから放出される蛍光には特徴がある
(電圧ピーク値や波形面積には法則性がある)

Vp / Q Vp / Q
電圧ピークと積分電荷量の比

電荷とは：
時間毎の電流値を積算したもの

Plasticシンチレータ

Plasticシンチレータ

高 エネルギーγ線

低 エネルギーγ線

どんなγ線でもVp/Q値は同じ
放射線種に固有の
Vp/Q値となる!!

Vp/Q vs Qtotal ヒートマップ

エネルギー情報も取得可能！
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PQD法によるα・β-線・γ線の弁別

未処理波形

ベースライン補正
(ペデスタル補正)

ノイズ成分の除去
(高速フーリエ変換)

Vp/Q 計算前の信号処理

β- γα
ピーク検知 -15 ns ～ データの最後まで (全データで統一)

β- γα

Vp/Q ≧ 0.8012Vp/Q < 0.8012

ピーク検知 -15 ns ～ ピーク終了 +200 ns
ピーク検知 -15 ns

 ～ データの最後まで

C++

Qtotal積算範囲 調整あり
(積算分岐 あり)

Qtotal積算範囲 調整なし
(積算分岐 なし)

波形の特徴に応じてQtotal積算範囲を調整

Qtotal
積算範囲
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PQD法によるα・β-線・γ線の弁別

PQD法による238U放射線の弁別結果 (ヒートマップによる可視化)

β-線

γ線

α線 Vp/Q = 0.8012 ↑

238U線源を目視上で弁別に成功！
Vp/Q積分範囲を制御することで明瞭な分離を実現

β-線

γ線

α線

ポイント！
現時点では見た目として分離できているだけ
(放射線を分けるルールが必要)

ただし…

Vp/Q 条件分岐なし Vp/Q 条件分岐あり
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α・β-線・γ線の弁別閾値 (理論閾値)

【アプローチ１】 理論閾値
Vp/Q にはVpとQtotalそれぞれの標準偏差が含まれている (誤差伝播)
その誤差伝播を近似式で表現してフィッティング解析を行う

Vp/Qの誤差
σVp/Q

Vp/Qには２つの誤差が合成されている
(誤差伝播)

σVp/Q可視化

σVp/Qの誤差伝播式

σVp/Q =
𝒌𝒌
𝑸𝑸

+ 𝒍𝒍

フィッティング式
(変数 k と l を解析で求める)

近似式で表現
𝝈𝝈𝑽𝑽𝑽𝑽/𝑸𝑸 =

𝟏𝟏
𝑸𝑸

𝝈𝝈𝑽𝑽𝑽𝑽𝟐𝟐 +
𝑽𝑽𝑷𝑷・𝝈𝝈𝑸𝑸
𝑸𝑸𝟐𝟐

𝟐𝟐

● σVp/Q

σVp/Qを数式化

σを調整するとフィッティングカーブ内に
対象線種が含まれる確率を調整できる！

ポイント！
１～ 4.42 σ

(信頼度 68.3 ～ 99.999%)

β-線のσVp/Qに対する
フィッティング

= Vpの誤差 + Qtotalの誤差
σVp σQ
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α・β-線・γ線の弁別閾値 (理論閾値)

【アプローチ１】 理論閾値Vp/Q積算分岐 なし
±2.58σ (信頼度 99%)

Vp/Q積算分岐 あり
±4.42σ (信頼度99.999%)

238U (ウラン) の線種弁別結果
Vp/Q積算分岐 β-線 γ線 α線 β＋γ線

弁別能
なし 98.42% 97.71% 100% 97.71%
あり 100% 100% 100% 86.44%

正解率
なし 98.67% 83.61% 98.55% 62.75%
あり 99.97% 99.76% 100% 100%

α・β-・γ線の精密な弁別に成功!!
β-とγ線の同時入射イベントも検知可能

ポイント！

注目！

β＋γ領域

β＋γ領域
γ領域

α領域

β-領域

γ領域
α領域

β-領域
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α・β-線・γ線の弁別閾値 (単純閾値)

単純な閾値であってもある程度の弁別が可能
理論閾値法と比較すると性能は低下

ポイント！

【アプローチ２】 単純閾値
各放射線を最も弁別できるVp/Q値を実験的に特定
そのVp/Q値に傾きゼロの一次関数にて閾値を設定

Vp/Q積算分岐 β-線 γ線 α線

弁別能
なし 99.32% 94.66% 100%

あり 100% 99.94% 100%

正解率
なし 99.22% 92.59% 100%

あり 99.73% 99.11% 100%

Vp/Q 積算分岐 なし

Vp/Q積算分岐 あり

弁別能：
設定した領域に正しく弁別できた割合

正解率：
各データが正しく弁別できた割合

γ領域
α領域

β-領域

γ領域
α領域

β-領域
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α・β-線・γ線の弁別閾値 (従来法)

Qpeak
40 ns

delay
40 ns

Qtail
40 ns

Qpeak / Qtail

【従来法】積分電荷量の計算範囲 概念図

【アプローチ３】 従来法 (Charge comparison法)

ピークの本体成分 (Qpeak) と 減衰成分 (Qtail) をそれぞれ定義
両者の積分電荷量の比を線種弁別に利用する

Vp/Q積算分岐 β-線 γ線 α線

弁別能 － 99.86% 81.70% 98.35%

正解率 － 97.66% 93.48% 98.53%

Qpeak (nC)

Q p
ea

k
/ Q

ta
il

γ領域

α領域

β-領域

β-線信号がγ領域に干渉してしまう (γ領域の弁別能が低い)

ポイント！

干渉
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Vp/Q 積算分岐 β-線 γ線 α線 β＋γ線

弁
別
能

従来法 － 99.86% 81.70% 98.35% －

PQD法

単純
閾値

なし 99.32% 94.66% 100% －

あり 100% 99.94% 100% －

理論
閾値

なし 98.42% 97.71% 100% 97.71%

あり 100% 100% 100% 86.44%

正
解
率

従来法 － 97.66% 93.48% 98.53% －

PQD法

単純
閾値

なし 99.22% 92.59% 100% －

あり 99.73% 99.11% 100% －

理論
閾値

なし 98.67% 83.61% 98.55% 62.75%

あり 99.97% 99.76% 100% 100%

様々な弁別法 まとめ

PQD法理論値は弁別能・正解率ともに最も高い
さらにβ＋γ同時イベントの検知も可能！

ポイント！

PQD法 単純閾値
(Qtotal 積算分岐 あり)

従来法 (Charge comparison法)

γ領域

α領域

β-領域

γ領域
α領域

β-領域

PQD法 理論閾値
(Qtotal 積算分岐 あり)

最も優れた弁別法！

γ領域
α領域

β-領域

β+γ領域
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実用化に向けた課題

実証段階なので放射線検出面が小さい！

現在の放射線検出面は…

１×１cm

放射線検出面を拡大するには…
1. 各シンチレータのサイズアップ

・Plasticシンチレータ (元々は液体) を所望のサイズに製作する検討

・無機シンチレータの特注 (既製品では対応できない)

2. 光電子増倍管のサイズアップ

・既製品の中で用途に合うものを選定

・光ガイドの形状や長さの再検討が必要

3. 外装ケースの作り直し

・シンチレータサイズアップに伴う重量増に耐えられるように
3Dプリンタではなく切削加工による外装ケースの製作が必要
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社会実装への道筋

時期 課題・検討すべき事項 社会実装への取組み

基礎研究 光収率などのシミュレーションが完了

現在 PQD法による線種弁別理論が確立 特許出願中

１年後 放射線検出面のサイズアップを実現
検出面における位置特定機能の実装

２年後 自走型ロボットに新型検出器を実装 検出器単体の社会実装
自走型ロボットの社会実装

３年後 新型放射線検出器による測定器の展開 新型測定器を応用してあらゆる測定器の小型化・販売
(排水用、排気用、γカウンタ、液シンカウンタ…)

汚染検査時に汚染箇所が可視化できる!!
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企業への期待

私たちは本検出器の社会実装を 本気 で目指しています！
✓ α線・β-線・γ線が一つの検出器で測定できることを当たり前にしたい

✓ 放射線関連分野における測定法のスタンダードにしたい

☞ 放射線測定器を開発中の企業 様
☞ 放射線関連分野への展開を考えている企業 様
☞ とにかく心意気を買っていただける企業 様

世の中にまだ存在しない 新しい放射線測定器 を一緒に作りませんか？
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企業への貢献 ・ PRポイント

この検出器が実用化されれば、いろんな放射線測定器を刷新できます
☞ γカウンタ・液体シンチレーションカウンタ、RI排気測定装置、RI排水測定装置…

☞ 原子力関連、放射線施設、医療施設など応用分野は広い

シンチレーション
光ファイバー線量計

MIDSOF (アクロバイオ)

動体追跡放射線治療用
呼吸同期システム

SyncTraX (島津製作所)

PRポイント
本研究を行っている石川研究室では

「世の中に役立つ放射線検出器」を開発しています

社会実装例も豊富です!!

石川 正純  教授 (発明者)
放射線計測学の専門家

×
阿保 憲史 (発表者・発明者)

放射線管理の専門家
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本技術に関する知的財産権・問い合わせ先について

発明の名称： 放射線検出器、放射線の線種弁別方法、放射能汚染検査方法、および放射能汚染探査装置

出願番号： 特願2025-149172

出願人： 国立大学法人北海道大学

発明者： 石川 正純、 阿保 憲史

北海道大学 産学・地域協働推進機構

産学・地域協働推進機構 ワンストップ窓口

https://www.mcip.hokudai.ac.jp/about/onestop.html
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ご清聴ありがとうございました
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